scholarly journals Combining Structure from Motion and close-range stereo photogrammetry to obtain scaled gravel bar DEMs

2018 ◽  
Vol 39 (23) ◽  
pp. 9269-9293 ◽  
Author(s):  
Wei Li ◽  
Stephane Bertin ◽  
Heide Friedrich
Author(s):  
Kévin Jacq ◽  
Estelle Ployon ◽  
William Rapuc ◽  
Claire Blanchet ◽  
Cécile Pignol ◽  
...  

2019 ◽  
Vol 11 (16) ◽  
pp. 1940 ◽  
Author(s):  
Fausto Mistretta ◽  
Giannina Sanna ◽  
Flavio Stochino ◽  
Giuseppina Vacca

Dense point clouds acquired from Terrestrial Laser Scanners (TLS) have proved to be effective for structural deformation assessment. In the last decade, many researchers have defined methodology and workflow in order to compare different point clouds, with respect to each other or to a known model, assessing the potentialities and limits of this technique. Currently, dense point clouds can be obtained by Close-Range Photogrammetry (CRP) based on a Structure from Motion (SfM) algorithm. This work reports on a comparison between the TLS technique and the Close-Range Photogrammetry using the Structure from Motion algorithm. The analysis of two Reinforced Concrete (RC) beams tested under four-points bending loading is presented. In order to measure displacement distributions, point clouds at different beam loading states were acquired and compared. A description of the instrumentation used and the experimental environment, along with a comprehensive report on the calculations and results obtained is reported. Two kinds of point clouds comparison were investigated: Mesh to mesh and modeling with geometric primitives. The comparison between the mesh to mesh (m2m) approach and the modeling (m) one showed that the latter leads to significantly better results for both TLS and CRP. The results obtained with the TLS for both m2m and m methodologies present a Root Mean Square (RMS) levels below 1 mm, while the CRP method yields to an RMS level of a few millimeters for m2m, and of 1 mm for m.


2019 ◽  
Vol 7 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Pauline Leduc ◽  
Sarah Peirce ◽  
Peter Ashmore

Abstract. For extending the applications of structure-from-motion (SfM) photogrammetry in river flumes, we present the main challenges and methods used to collect a large dataset (>1000 digital elevation models, DEMs) of high-quality topographic data using close-range SfM photogrammetry with a resulting vertical precision of ∼1 mm. Automatic target detection, batch processing, and considerations for image quality were fundamental to the successful implementation of the SfM technique on such a large dataset, which was used primarily for capturing details of gravel-bed braided river morphodynamics and sedimentology. While the applications of close-range SfM photogrammetry are numerous, we include sample results from DEM differencing, which was used to quantify morphology change and provide estimates of water depth in braided rivers, as well as image analysis for mapping bed surface texture. These methods and results contribute to the growing field of SfM applications in geomorphology and close-range experimental settings in general.


Fossil Record ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 113-119 ◽  
Author(s):  
A. Wiedemann ◽  
T. Suthau ◽  
J. Albertz

Abstract. To derive physiological data of dinosaurs, it is necessary to determine the volume and the surface area of this animals. For this purpose, a detailed survey of reconstructed skeletons is required. The skeletons of three dinosaurs in the Museum für Naturkunde in Berlin and two skeletons in the Museum d'Histoire Naturelle in Paris have been surveyed using stereo photogrammetry. Two of the Berlin skeletons were also surveyed with the close range laser scanners of the Institut für Navigation of the Universität Stuttgart. Both data acquisition techniques require a geodetic control network as a geometric reference system. The surveying methods used, together with results of mathematical approaches for the determination of the volume and surface of the animals are presented in this paper. Zur Herleitung physiologischer Daten der Dinosaurier ist es erforderlich, zunächst Volumen und Oberfläche ihres Körpers zu bestimmen. Dazu wurde eine detaillierte Vermessung rekonstruierter Skelette durchgeführt. Die Skelette dreier Saurier im Museum für Naturkunde in Berlin und zweier im Museum d'Histoire Naturelle in Paris wurden stereophotogrammetrisch vermessen. Bei zwei der Berliner Skelette wurden zusätzlich die Laserscanner des Instituts für Navigation der Universität Stuttgart eingesetzt. Beide Datenerfassungstechniken benötigen ein Paßpunktfeld als geometrisches Referenzsystem. Die verwendeten Vermessungsmethoden, die mathematischen Ansätze für die Berechnung von Volumina und Oberflächen und die Ergebnisse werden in diesem Aufsatz vorgestellt. doi:10.1002/mmng.1999.4860020108


2017 ◽  
Vol 6 (11) ◽  
pp. 328 ◽  
Author(s):  
Jack Koci ◽  
Ben Jarihani ◽  
Javier X. Leon ◽  
Roy Sidle ◽  
Scott Wilkinson ◽  
...  

2018 ◽  
Author(s):  
Pauline Leduc ◽  
Sarah Peirce ◽  
Peter Ashmore

Abstract. Extending the applications of Structure-from-Motion (SfM) photogrammetry in river flumes, we present the main challenges and methods used to collect a large dataset (> 1000 digital elevation models) of high-quality topographic data using close-range SfM photogrammetry with a resulting vertical precision of ~ 1 mm. Automatic target-detection, batch processing, and considerations for image quality were fundamental to successful implementation of SfM on such a large dataset, which was used primarily for capturing details of gravel-bed braided river morphodynamics and sedimentology. While the applications of close-range SfM photogrammetry are numerous, we include sample results from DEM differencing, which was used to quantify morphology change and provide estimates of water depth in braided rivers, as well as image analysis for mapping bed surface texture. These methods and results contribute to the growing field of SfM applications in geomorphology and close-range experimental settings in general.


2019 ◽  
Author(s):  
Leon DeBell ◽  
James P. Duffy ◽  
Trevelyan J. McKinley ◽  
Karen Anderson

AbstractStructure-from-Motion Multi View Stereo (SfM-MVS) photogrammetry is a technique by which volumetric data can be derived from overlapping image sets, using changes of an objects position between images to determine its height and spatial structure. Whilst SfM-MVS has fast become a powerful tool for scientific research, its potential lies beyond the scientific setting, since it can aid in delivering information about habitat structure, biomass, landscape topography, spatial distribution of species in both two and three dimensions, and aid in mapping change over time – both actual and predicted. All of which are of strong relevance for the conservation community, whether from a practical management perspective or understanding and presenting data in new and novel ways from a policy perspective.For practitioners outside of academia wanting to use SfM-MVS there are technical barriers to its application. For example, there are many SfM-MVS software options, but knowing which to choose, or how to get the best results from the software can be difficult for the uninitiated. There are also free and open source software options (FOSS) for processing data through a SfM-MVS pipeline that could benefit those in conservation management and policy, especially in instances where there is limited funding (i.e. commonly within grassroots or community-based projects). This paper signposts the way for the conservation community to understand the choices and options for SfM-MVS implementation, its limitations, current best practice guidelines and introduces applicable FOSS options such as OpenDroneMap, MicMac, CloudCompare, QGIS and speciesgeocodeR. It will also highlight why and where this technology has the potential to become an asset for spatial, temporal and volumetric studies of landscape and conservation ecology.


Sign in / Sign up

Export Citation Format

Share Document