stereo photogrammetry
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 150 ◽  
pp. 106876
Author(s):  
Mahmoud A Alagha ◽  
Ashraf Ayoub ◽  
Stephen Morley ◽  
Xiangyang Ju

AIAA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Daniel C. Stubbs ◽  
Lokesh Silwal ◽  
Brian S. Thurow ◽  
Masatoshi Hirabayashi ◽  
Vrishank Raghav ◽  
...  

2021 ◽  
Author(s):  
T. SARICAM ◽  
Hasan Ozturk

Abstract We propose an automated camera setup for photogrammetric roughness analysis in the laboratory environment. The developed fast and low-cost automation setup can be very useful for tedious and laborsome manual field logging practices. The photographs are processed in MATLAB to obtain disparity maps. Coding routines for stereo photogrammetry and digital measurements are written in MATLAB. Secondly, 6 effecting factors (projecting an image onto core face, depth of field, brightness, camera-to-object to baseline distance ratio, projected image size and occlusion) influencing noise in roughness depth maps computed by employing stereo photogrammetry are investigated. After deciding the best values that allow the lowest amount of noise, depth maps of 6 core faces are computed. Using the 3D point cloud generated, roughness profile measurements are made. Then, 8 profile measurements are made for each core face, both manually and digitally. The accuracy of the disparity maps has been verified by comparing 48 joint roughness coefficient (JRC) measurements made manually using a profile gauge. It was proved that surface roughness can be measured very fast in millimetric accuracy with an average Root Mean Square Error (RMSE) of 3.50 and Mean Absolute Error (MAE) of 3.02 by the help of the proposed set-up and calibration.


2021 ◽  
Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Yubin Fan ◽  
Lhakpa Drolma

Abstract. Antarctic digital elevation models (DEMs) are essential for human fieldwork, ice topography monitoring and ice mass change estimation. In the past thirty decades, several Antarctic DEMs derived from satellite data have been published. However, these DEMs either have coarse spatial resolutions or vague time stamps, which limit their further scientific applications. In this study, the new-generation satellite laser altimeter Ice, Cloud, And Land Elevation Satellite-2 (ICESat-2) is used to generate a fine-scale and specific time-stamped Antarctic DEM for both the ice sheet and ice shelves. Approximately 4.69 × 109 ICESat-2 measurement points from November 2018 to November 2019 are used to estimate surface elevations at resolutions of 250 m, 500 m and 1 km based on a spatiotemporal fitting method, which results in a modal resolution of 250 m for this DEM. Approximately 74 % of Antarctica is observed, and the remaining observation gaps are interpolated using the ordinary kriging method. National Aeronautics and Space Administration Operation IceBridge (OIB) airborne data are used to evaluate the generated Antarctic DEM (hereafter called the ICESat-2 DEM) in individual Antarctic regions and surface types. Overall, a median bias of 0.11 m and a root-mean-square deviation of 8.27 m result from approximately 1.4 × 105 spatiotemporally matched grid cells. The accuracy and uncertainty of the ICESat-2 DEM vary in relation to the surface slope and roughness, and more reliable estimates are found in the flat ice sheet interior. The ICESat-2 DEM is superior to previous DEMs derived from satellite altimeters for both spatial resolution and elevation accuracy and comparable to those derived from stereo-photogrammetry and interferometry. The decimeter-scale accuracy and specific time stamp make the ICESat-2 DEM an essential addition to the existing Antarctic DEM groups, and it can be further used for other scientific applications.


2021 ◽  
Vol 10 (8) ◽  
pp. 502
Author(s):  
Ubaldo Marín-Comitre ◽  
Álvaro Gómez-Gutiérrez ◽  
Francisco Lavado-Contador ◽  
Manuel Sánchez-Fernández ◽  
Alberto Alfonso-Torreño

Watering ponds represent an important part of the hydrological resources in some water-limited environments. Knowledge about their storage capacity and geometrical characteristics is crucial for a better understanding and management of water resources in the context of climate change. In this study, the suitability of different geomatic approaches to model watering pond geometry and estimate pond-specific and generalized volume–area–height (V–A–h) relationships was tested. Terrestrial structure-from-motion and multi-view-stereo photogrammetry (SfM-MVS), terrestrial laser scanner (TLS), laser-imaging detection and ranging (LIDAR), and aerial SfM-MVS were tested for the emerged terrain, while the global navigation satellite system (GNSS) was used to survey the submerged terrain and to test the resulting digital elevation models (DEMs). The combined use of terrestrial SfM-MVS and GNSS produced accurate DEMs of the ponds that resulted in an average error of 1.19% in the maximum volume estimation, comparable to that obtained by the TLS+GNSS approach (3.27%). From these DEMs, power and quadratic functions were used to express pond-specific and generalized V–A–h relationships and checked for accuracy. The results revealed that quadratic functions fit the data particularly well (R2 ≥ 0.995 and NRMSE < 2.25%) and can therefore be reliably used as simple geometric models of watering ponds in hydrological simulation studies. Finally, a generalized V–A power relationship was obtained. This relationship may be a valuable tool to estimate the storage capacity of other watering ponds in comparable areas in a context of data scarcity.


2021 ◽  
Vol 13 (15) ◽  
pp. 2885
Author(s):  
Mei Li ◽  
Zengyuan Li ◽  
Qingwang Liu ◽  
Erxue Chen

Plantation forests play a critical role in forest products and ecosystems. Unmanned aerial vehicle (UAV) remote sensing has become a promising technology in forest related applications. The stand heights will reflect the growth and competition of individual trees in plantation. UAV laser scanning (ULS) and UAV stereo photogrammetry (USP) can both be used to estimate stand heights using different algorithms. Thus, this study aimed to deeply explore the variations of four kinds of stand heights including mean height, Lorey’s height, dominated height, and median height of coniferous plantations using different models based on ULS and USP data. In addition, the impacts of thinned point density of 30 pts to 10 pts, 5 pts, 1 pts, and 0.8 pts/m2 were also analyzed. Forest stand heights were estimated from ULS and USP data metrics by linear regression and the prediction accuracy was assessed by 10-fold cross validation. The results showed that the prediction accuracy of the stand heights using metrics from USP was basically as good as that of ULS. Lorey’s height had the highest prediction accuracy, followed by dominated height, mean height, and median height. The correlation between height percentiles metrics from ULS and USP increased with the increased height. Different stand heights had their corresponding best height percentiles as variables based on stand height characteristics. Furthermore, canopy height model (CHM)-based metrics performed slightly better than normalized point cloud (NPC)-based metrics. The USP was not able to extract exact terrain information in a continuous coniferous plantation for forest canopy cover (CC) over 0.49. The combination of USP and terrain from ULS can be used to estimate forest stand heights with high accuracy. In addition, the estimation accuracy of each forest stand height was slightly affected by point density, which can also be ignored.


2021 ◽  
Vol 92 (7) ◽  
pp. 075107
Author(s):  
Mingkai Zhang ◽  
Jin Liang ◽  
Lei Chen ◽  
Zhengzong Tang ◽  
Yulong Zong

Author(s):  
Kévin Jacq ◽  
Estelle Ployon ◽  
William Rapuc ◽  
Claire Blanchet ◽  
Cécile Pignol ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1588
Author(s):  
Annie S. Guillaume ◽  
Kevin Leempoel ◽  
Estelle Rochat ◽  
Aude Rogivue ◽  
Michel Kasser ◽  
...  

The vulnerability of alpine environments to climate change presses an urgent need to accurately model and understand these ecosystems. Popularity in the use of digital elevation models (DEMs) to derive proxy environmental variables has increased over the past decade, particularly as DEMs are relatively cheaply acquired at very high resolutions (VHR; <1 m spatial resolution). Here, we implement a multiscale framework and compare DEM-derived variables produced by Light Detection and Ranging (LiDAR) and stereo-photogrammetry (PHOTO) methods, with the aim of assessing their relevance and utility in species distribution modelling (SDM). Using a case study on the arctic-alpine plant, Arabis alpina, in two valleys in the western Swiss Alps, we show that both LiDAR and PHOTO technologies can be relevant for producing DEM-derived variables for use in SDMs. We demonstrate that PHOTO DEMs, up to a spatial resolution of at least 1 m, rivalled the accuracy of LiDAR DEMs, largely owing to the customizability of PHOTO DEMs to the study sites compared to commercially available LiDAR DEMs. We obtained DEMs at spatial resolutions of 6.25 cm–8 m for PHOTO and 50 cm–32 m for LiDAR, where we determined that the optimal spatial resolutions of DEM-derived variables in SDM were between 1 and 32 m, depending on the variable and site characteristics. We found that the reduced extent of PHOTO DEMs altered the calculations of all derived variables, which had particular consequences on their relevance at the site with heterogenous terrain. However, for the homogenous site, SDMs based on PHOTO-derived variables generally had higher predictive powers than those derived from LiDAR at matching resolutions. From our results, we recommend carefully considering the required DEM extent to produce relevant derived variables. We also advocate implementing a multiscale framework to appropriately assess the ecological relevance of derived variables, where we caution against the use of VHR-DEMs finer than 50 cm in such studies.


Sign in / Sign up

Export Citation Format

Share Document