Multi-project scheduling: a new categorization for heuristic scheduling rules in construction scheduling problems

1988 ◽  
Vol 6 (2) ◽  
pp. 93-115 ◽  
Author(s):  
Samir I. G. Allam
2021 ◽  
Vol 11 (2) ◽  
pp. 650
Author(s):  
Muritala Adebayo Isah ◽  
Byung-Soo Kim

Construction projects are planned in a complex and dynamic environment characterized by high risks and uncertainties amidst resource constraints. Assessing construction schedule risk facilitates informed decision-making, especially in a resource-constrained situation, and allows proactive actions to be taken so that project objectives are not jeopardized. This study presents a stochastic multiskilled resource scheduling (SMSRS) model for resource-constrained project scheduling problems (RCSPSP) considering the impact of risk and uncertainty on activity durations. The SMSRS model was developed by integrating a schedule risk analysis (SRA) model (developed in MS Excel) with an existing multiskilled resource scheduling (MSRS) algorithm for the development of a feasible and realistic schedule. The computational experiment carried out on three case projects using the proposed SMSRS model revealed an average percentage deviation of 10.50%, indicating the inherent risk and uncertainty in activity durations of the project schedule. The core contribution of the proposed SMSRS model is that it: (1) presents project practitioners with a simple tool for assessing the risks and uncertainty associated with resource-constrained project schedules so that necessary response actions can be taken to ensure project success; (2) provides the small-scale construction businesses with an affordable tool for evaluating schedule risk and developing a feasible and realistic project schedule.


2003 ◽  
Vol 148 (3) ◽  
pp. 604-620 ◽  
Author(s):  
Mario Vanhoucke ◽  
Erik Demeulemeester ◽  
Willy Herroelen

2009 ◽  
Vol 419-420 ◽  
pp. 633-636 ◽  
Author(s):  
James C. Chen ◽  
Wun Hao Jaong ◽  
Cheng Ju Sun ◽  
Hung Yu Lee ◽  
Jenn Sheng Wu ◽  
...  

Resource-constrained multi-project scheduling problems (RCMPSP) consider precedence relationship among activities and the capacity constraints of multiple resources for multiple projects. RCMPSP are NP-hard due to these practical constraints indicating an exponential calculation time to reach optimal solution. In order to improve the speed and the performance of problem solving, heuristic approaches are widely applied to solve RCMPSP. This research proposes Hybrid Genetic Algorithm (HGA) and heuristic approach to solve RCMPSP with an objective to minimize the total tardiness. HGA is compared with three typical heuristics for RCMPSP: Maximum Total Work Content, Earliest Due Date, and Minimum Slack. Two typical RCMPSP from literature are used as a test bed for performance evaluation. The results demonstrate that HGA outperforms the three heuristic methods in term of the total tardiness.


Sign in / Sign up

Export Citation Format

Share Document