Impact of free curcumin and curcumin nanocapsules on viability and oxidative status of neural cell lines

2021 ◽  
pp. 1-11
Author(s):  
Bianca Fagan Bissacotti ◽  
Priscila Marquezan Copetti ◽  
Nathieli Bianchin Bottari ◽  
Samanta da Silva Gündel ◽  
Alencar Kolinski Machado ◽  
...  
1999 ◽  
Vol 73 (4) ◽  
pp. 3338-3350 ◽  
Author(s):  
Nathalie Arbour ◽  
Geneviève Côté ◽  
Claude Lachance ◽  
Marc Tardieu ◽  
Neil R. Cashman ◽  
...  

ABSTRACT Human coronaviruses (HuCV) are recognized respiratory pathogens. Data accumulated by different laboratories suggest their neurotropic potential. For example, primary cultures of human astrocytes and microglia were shown to be susceptible to an infection by the OC43 strain of HuCV (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800–806, 1997). We speculate that the neurotropism of HuCV will lead to persistence within the central nervous system, as was observed for murine coronaviruses. As a first step in the verification of our hypothesis, we have characterized the susceptibility of various human neural cell lines to infection by HuCV-OC43. Viral antigen, infectious virus progeny, and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, oligodendrocytic MO3.13, and the CHME-5 immortalized fetal microglial cell lines, were all susceptible to an acute infection by HuCV-OC43. Viral antigen and RNA and release of infectious virions were observed during persistent HuCV-OC43 infections (∼130 days of culture) of U-87 MG, U-373 MG, MO3.13, and H4 cell lines. Nucleotide sequences of RNA encoding the putatively hypervariable viral S1 gene fragment obtained after 130 days of culture were compared to that of initial virus input. Point mutations leading to amino acid changes were observed in all persistently infected cell lines. Moreover, an in-frame deletion was also observed in persistently infected H4 cells. Some point mutations were observed in some molecular clones but not all, suggesting evolution of the viral population and the emergence of viral quasispecies during persistent infection of H4, U-87 MG, and MO3.13 cell lines. These results are consistent with the potential persistence of HuCV-OC43 in cells of the human nervous system, accompanied by the production of infectious virions and molecular variation of viral genomic RNA.


2009 ◽  
Vol 90 (7) ◽  
pp. 1649-1658 ◽  
Author(s):  
Daniel Růžek ◽  
Marie Vancová ◽  
Martina Tesařová ◽  
Arunee Ahantarig ◽  
Jan Kopecký ◽  
...  

Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10 000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 34735-34743 ◽  
Author(s):  
Haolin Xin ◽  
Ying Cui ◽  
Zhongping An ◽  
Qian Yang ◽  
Xuan Zou ◽  
...  

Glutamate is an excitatory neurotransmitter involved in neural function.


Retina ◽  
1997 ◽  
Vol 17 (5) ◽  
pp. 472-473
Author(s):  
D. Trisler ◽  
J. Rutin ◽  
B. Pessac

Sign in / Sign up

Export Citation Format

Share Document