Oceanwide Precise Determination of Sea Surface Height from In-Situ Measurements on Cargo Ships

2014 ◽  
Vol 37 (1) ◽  
pp. 77-96 ◽  
Author(s):  
Ole Roggenbuck ◽  
Jörg Reinking ◽  
Alexander Härting
2013 ◽  
Vol 24 (3) ◽  
pp. 147
Author(s):  
Ming LI ◽  
Qinghua YANG ◽  
Jiechen ZHAO ◽  
Lin ZHANG ◽  
Chunhua LI ◽  
...  

2014 ◽  
Vol 119 (9) ◽  
pp. 6171-6189 ◽  
Author(s):  
Wenqing Tang ◽  
Simon H. Yueh ◽  
Alexander G. Fore ◽  
Akiko Hayashi

2012 ◽  
Vol 9 (5) ◽  
pp. 2885-2914 ◽  
Author(s):  
A. Soloviev ◽  
C. Maingot ◽  
S. Matt ◽  
R. E. Dodge ◽  
S. Lehner ◽  
...  

Abstract. This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR) imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper). We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.


2009 ◽  
Vol 59 (4) ◽  
pp. 823-832 ◽  
Author(s):  
Ye Changqing ◽  
Wang Dongsheng ◽  
Wu Xiaohong ◽  
Qu Jiuhui ◽  
John Gregory

The speciation of Al-OH complexes in terms of Ala, Alb and Alc could be achieved by traditional ferron assay and Alb is generally considered as Al13, however, the inherent correlation between them remains an enigma. This paper presents a modified ferron assay to get precise determination of Al13 using nonlinear least squares analysis, and to clarify the correlation between Alb and Al13. Two parallel reactions conforming to pseudo-first-order kinetics can simulate the complicate reactions between polynuclear complexes and ferron successfully. Four types of experimental kinetic constant (k value) of Al-OH complexes can be observed by this method when investigating three typical aluminium solutions. Comparing with the results of 27Al NMR, the species with moderate kinetics around 0.001 s−1 can be confirmed to resemble to Al13 polycation. The other types of kinetics are also well-regulated in partially neutralized aluminium solutions with various OH/Al ratios (b values) in the range 0 ∼ 2.5. It would provide potential means to trace the in-situ formation of Al13 in dilute solutions such as coagulation with Al-based coagulants


2013 ◽  
Vol 30 (11) ◽  
pp. 2689-2694 ◽  
Author(s):  
Nadya T. Vinogradova ◽  
Rui M. Ponte

Abstract Calibration and validation efforts of the Aquarius and Soil Moisture and Ocean Salinity (SMOS) satellite missions involve comparisons of satellite and in situ measurements of sea surface salinity (SSS). Such estimates of SSS can differ by the presence of small-scale variability, which can affect the in situ point measurement, but be averaged out in the satellite retrievals because of their large footprint. This study quantifies how much of a difference is expected between in situ and satellite SSS measurements on the basis of their different sampling of spatial variability. Maps of sampling error resulting from small-scale noise, defined here as the root-mean-square difference between “local” and footprint-averaged SSS estimates, are derived using a solution from a global high-resolution ocean data assimilation system. The errors are mostly <0.1 psu (global median is 0.05 psu), but they can be >0.2 psu in several regions, particularly near strong currents and outflows of major rivers. To examine small-scale noise in the context of other errors, its values are compared with the overall expected differences between monthly Aquarius SSS and Argo-based estimates. Results indicate that in several ocean regions, small-scale variability can be an important source of sampling error for the in situ measurements.


2020 ◽  
Vol 8 (6) ◽  
pp. 453
Author(s):  
Andrea M. Gomez ◽  
Kyle C. McDonald ◽  
Karsten Shein ◽  
Stephanie DeVries ◽  
Roy A. Armstrong ◽  
...  

Coral reefs are among the most biologically diverse ecosystems on Earth. In the last few decades, a combination of stressors has produced significant declines in reef expanse, with declining reef health attributed largely to thermal stresses. We investigated the correspondence between time-series satellite remote sensing-based sea surface temperature (SST) datasets and ocean temperature monitored in situ at depth in coral reefs near La Parguera, Puerto Rico. In situ temperature data were collected for Cayo Enrique and Cayo Mario, San Cristobal, and Margarita Reef. The three satellite-based SST datasets evaluated were NOAA’s Coral Reef Watch (CoralTemp), the UK Meteorological Office’s Operational SST and Sea Ice Analysis (OSTIA), and NASA’s Jet Propulsion Laboratory (G1SST). All three satellite-based SST datasets assessed displayed a strong positive correlation (>0.91) with the in situ temperature measurements. However, all SST datasets underestimated the temperature, compared with the in situ measurements. A linear regression model using the SST datasets as the predictor for the in situ measurements produced an overall offset of ~1 °C for all three SST datasets. These results support the use of all three SST datasets, after offset correction, to represent the temperature regime at the depth of the corals in La Parguera, Puerto Rico.


1997 ◽  
Vol 51 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Jeffrey F. Aust ◽  
Karl S. Booksh ◽  
Christopher M. Stellman ◽  
Richard S. Parnas ◽  
Michael L. Myrick

A method for real-time determination of the percent cure of epoxies via in situ fiber-optic Raman spectroscopy has been developed. This method utilizes a probe design developed for real-time monitoring of polymer curing and multivariate analysis to interpret the data and determine percent cure. This method was demonstrated to be reliable to ±0.54% of cure in laboratory samples over a 50–99% cure range. A preliminary study measuring cure percentage in an industrial, glass-reinforced composite has been shown to be reliable to ±0.82% in the 40–90% cure range.


Sign in / Sign up

Export Citation Format

Share Document