Analysis of Al A359/SiCp Functionally Graded Cylinder Subjected to Internal Pressure and Temperature Gradient with Elastic-Plastic Deformation

2011 ◽  
Vol 34 (10) ◽  
pp. 1054-1070 ◽  
Author(s):  
A. Parvizi ◽  
R. Naghdabadi ◽  
J. Arghavani
2016 ◽  
Vol 8 (2) ◽  
pp. 331-352 ◽  
Author(s):  
Libiao Xin ◽  
Guansuo Dui ◽  
Shengyou Yang ◽  
Ying Liu

AbstractThe elastic-plastic response of the functionally graded thick-walled tube subjected to internal pressure is investigated by using the relation of the volume average stresses of constituents and the macroscopic stress of composite material in micromechanics. The tube consists of two idealized isotropic elastic-plastic materials whose volume fractions are power functions of the radius. As the internal pressure increases, the deformations of one phase and two phases from elastic to plastic are analyzed. In order to simplify the calculations we assume both materials with the same Poisson's ratio. By using the assumption of a uniform strain field within the representative volume element and the Tresca yield criterion, the theoretical solutions are obtained for the case of two elastic phases and the case of two plastic phases, and the function of the radial displacement is presented for the case with both elastic and plastic phases. The yield criterion of functionally graded material is given in terms of the yield stresses and volume fractions of constituents rather than Young's modulus and yield stress with different unknown parameters of the whole material in the existing papers. Finally we also discuss the position where the plastic deformation first occurs and the conditions for which material first yields in the tube.


Author(s):  
Shams Torabnia ◽  
Sepideh Aghajani ◽  
Mohammadreza Hemati

AbstractFunctionally graded material shafts are the main part of many modern rotary machines such as turbines and electric motors. The purpose of this study is to present an analytical solution of the elastic-plastic deformation of functionally graded material hollow rotor under a high centrifugal effect and finally determine the maximum allowed angular velocity of a hollow functionally graded material rotating shaft. Introducing non-dimensional parameters, the equilibrium equation has been analytically solved. The results for variable material properties are compared with the homogeneous rotor and the case in which Young’s modulus is the only variable while density and yield stress are considered to be constant. It is shown that material variation has a considerable effect on the stress and strain components and radial displacement. Considering variable density and yield stress causes yielding onset from inner, outer, or simultaneously from both inner and outer rotor shaft radius in contrast to earlier researches that modulus of elasticity was the only variable. The effects of the density on the failure of a functionally graded material elastic fully plastic in a hollow rotating shaft are investigated for the first time in this study with regard to Tresca’s yield criterial. Numerical simulations are used to verify the derived formulations which are in satisfying agreement.


2017 ◽  
Vol 09 (08) ◽  
pp. 1750118 ◽  
Author(s):  
Hassan Shokrollahi

In this paper, formulation of elastic-plastic analysis of functionally graded (FG) spherical pressure vessels under internal pressure based on strain gradient plasticity is presented. The material properties are assumed to vary in a power law manner in the radial direction. A linear hardening rule for the material behavior in the plastic region is assumed. After deriving the governing differential equations, a closed form solution is obtained. At the first step, the obtained results were validated against other available results in the literature. Then the effects of changing the inner radius from a few micro-meters to one meter, FG power index and strain gradient coefficient on stress and plastic region size are studied based on classical and strain gradient theories. Also, the effect of internal pressure on the size of plastic region is studied.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


2021 ◽  
Vol 158 ◽  
pp. 103876
Author(s):  
Qi-lin Xiong ◽  
Zhenhuan Li ◽  
Takahiro Shimada ◽  
Takayuki Kitamura

2003 ◽  
Vol 125 (3) ◽  
pp. 267-273 ◽  
Author(s):  
W. Zhao ◽  
R. Seshadri ◽  
R. N. Dubey

A technique for elastic-plastic analysis of a thick-walled elastic-plastic cylinder under internal pressure is proposed. It involves two parametric functions and piecewise linearization of the stress-strain curve. A deformation type of relationship is combined with Hooke’s law in such a way that stress-strain law has the same form in all linear segments, but each segment involves different material parameters. Elastic values are used to describe elastic part of deformation during loading and also during unloading. The technique involves the use of deformed geometry to satisfy the boundary and other relevant conditions. The value of strain energy required for deformation is found to depend on whether initial or final geometry is used to satisfy the boundary conditions. In the case of low work-hardening solid, the difference is significant and cannot be ignored. As well, it is shown that the new formulation is appropriate for elastic-plastic fracture calculations.


Sign in / Sign up

Export Citation Format

Share Document