The Rigid Die on a Half-Space with Thermal Relaxation and Convection: Influence of Sliding Speed, Die Temperature, and Geometry

2014 ◽  
Vol 37 (7) ◽  
pp. 832-851 ◽  
Author(s):  
Louis M. Brock
2008 ◽  
Vol 130 (4) ◽  
Author(s):  
W. Wayne Chen ◽  
Q. Jane Wang

A thermomechanical analysis of elasto-plastic bodies is a necessary step toward the understanding of tribological behaviors of machine components subjected to both mechanical loading and frictional heating. A three-dimensional thermoelastoplastic contact model for counterformal bodies has been developed, which takes into account steady state heat flux, temperature-dependent strain hardening behavior, and interaction of mechanical and thermal loads. The fast Fourier transform and conjugate gradient method are the underlying numerical algorithms used in this model. Sliding of a half-space over a stationary sphere is simulated with this model. The friction-induced heat is partitioned into two bodies based on surface temperature distributions. In the simulation, the sphere is considered to be fully thermoelastoplastic, while the half-space is treated to be thermoelastic. Simulation results include surface pressure, temperature rise, and subsurface stress and plastic strain fields. The paper also studies the influences of sliding speed and thermal softening on contact behaviors for sliding speed ranging three orders of magnitude.


1990 ◽  
Vol 13 (3) ◽  
pp. 567-578 ◽  
Author(s):  
S. K. Roy-Choudhuri ◽  
Gargi Chatterjee

In the present paper we consider the magneto-thermo-elastic wave produced by a thermal shock in a perfectly conducting elastic half-space. Here the Lord-Shulman theory of thermoelasticity [1] is used to account for the interaction between the elastic and thermal fields. The solution obtained in analytical form reduces to those of Kaliski and Nowacki [2] when the coupling between the temperature and strain fields and the relaxation time are neglected. The results also agree with those of Massalas and DaLamangas [3] in absence of the thermal relaxation time.


Author(s):  
А. Шоев ◽  
A. Shoev

A technology and a tool for processing work surfaces in crankshafts and cams of camshafts by endless diamond belts are considered. The characteristics of endless diamond belts and their potentialities in assurance of roughness and efficiency at work surface grinding and polishing are shown. The purposefulness in assurance of an optimum curvilinear transverse section of cams in camshafts by grinding with endless belts is defined. It is shown, that it is possible to control a curvilinear profile of cams in camshafts at the expense of a belt width and a belt tension. It is based on a theoretical basis of the interaction of a rigid die (cam) with the elastic half-space (belt). An optimum curvilinearity of the transverse section of a cam ensures the increase of its life.


2019 ◽  
Vol 24 (3) ◽  
pp. 661-673 ◽  
Author(s):  
B. Singh ◽  
S. Verma

Abstract The governing equations for a homogeneous and isotropic thermoelastic medium are formulated in the context of coupled thermoelasticity, Lord and Shulman theory of generalized thermoelasticity with one relaxation time, Green and Lindsay theory of generalized thermoelasticity with two relaxation times, Green and Nagdhi theory of thermoelasticity without energy dissipation and Chandrasekharaiah and Tzou theory of thermoelasticity. These governing equations are solved to obtain general surface wave solutions. The particular solutions in a half-space are obtained with the help of appropriate radiation conditions. The two types of boundaries at athe surface of a half-space are considered namely, the stress free thermally insulated boundary and stress free isothermal boundary. The particular solutions obtained in a half-space satisfy the relevant boundary conditions at the free surface of the half-space and a frequency equation for the Rayleigh wave speed is obtained for both thermally insulated and isothermal cases. The non-dimensional Rayleigh wave speed is computed for aluminium metal to observe the effects of frequency, thermal relaxation time and different theories of thermoelasticity.


Sign in / Sign up

Export Citation Format

Share Document