Analysis of three–dimensional free vibrations of isotropic visco-thermoelastic solid cylinder with two relaxation time parameters

2020 ◽  
Vol 44 (1) ◽  
pp. 107-132
Author(s):  
Dinesh Kumar Sharma ◽  
Mahesh Kumar Sharma ◽  
Nantu Sarkar
Author(s):  
Vladislav Sh. Shagapov ◽  
Ismagilyan G. Khusainov ◽  
Emiliya V. Galiakbarova ◽  
Zulfya R. Khakimova

This article studies the process of relaxation of the pressure in a tank with the damaged area of the wall after pressure-testing. The authors use different methods for the diagnosis of the technical condition of objects of petroleum products storage. Pressure testing is one of nondestructive methods. The rate of pressure decrease is characteristic of the system tightness. This article studies the cases of ground and underground location of the tank. Pressure testing involves excess pressure inside of a tank and observing its decrease. Over time, one can assess the integrity of the system. This has required creating mathematical models to account the filtration of the liquid depending on the location of the tank. The results include the analytical solution of the task and the formulas for describing the dependence of the relaxation time of pressure in the tank from the liquid and soil parameters, geometry of the tank, and the damaged portion of the wall. The two- and three-dimensional cases of liquids filtration for the case of underground location of the tank were considered. The results of some numerical calculations of the dependence of reduction time and the time of half-life pressure from the area of the damaged portion of the wall were shown. The obtained solutions allow assessing the extent of the damaged area by the pressure testing with known values of tank, liquid, and soil.


2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


2018 ◽  
Vol 33 ◽  
pp. 02033
Author(s):  
Vladimir Agapov

The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.


2012 ◽  
Vol 11 (5) ◽  
pp. 1525-1546 ◽  
Author(s):  
Philip Barton ◽  
Evgeniy Romenski

AbstractIn this paper we show that entropy can be used within a functional for the stress relaxation time of solid materials to parametrise finite viscoplastic strain-hardening deformations. Through doing so the classical empirical recovery of a suitable irreversible scalar measure of work-hardening from the three-dimensional state parameters is avoided. The success of the proposed approach centres on determination of a rate-independent relation between plastic strain and entropy, which is found to be suitably simplistic such to not add any significant complexity to the final model. The result is sufficiently general to be used in combination with existing constitutive models for inelastic deformations parametrised by one-dimensional plastic strain provided the constitutive models are thermodynamically consistent. Here a model for the tangential stress relaxation time based upon established dislocation mechanics theory is calibrated for OFHC copper and subsequently integrated within a two-dimensional moving-mesh scheme. We address some of the numerical challenges that are faced in order to ensure successful implementation of the proposedmodel within a hydrocode. The approach is demonstrated through simulations of flyer-plate and cylinder impacts.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


1996 ◽  
Vol 49 (3) ◽  
pp. 155-199 ◽  
Author(s):  
Ahmed K. Noor ◽  
W. Scott Burton ◽  
Charles W. Bert

The focus of this review is on the hierarchy of computational models for sandwich plates and shells, predictor-corrector procedures, and the sensitivity of the sandwich response to variations in the different geometric and material parameters. The literature reviewed is devoted to the following application areas: heat transfer problems; thermal and mechanical stresses (including boundary layer and edge stresses); free vibrations and damping; transient dynamic response; bifurcation buckling, local buckling, face-sheet wrinkling and core crimping; large deflection and postbuckling problems; effects of discontinuities (eg, cutouts and stiffeners), and geometric changes (eg, tapered thickness); damage and failure of sandwich structures; experimental studies; optimization and design studies. Over 800 relevant references are cited in this review, and another 559 references are included in a supplemental bibliography for completeness. Extensive numerical results are presented for thermally stressed sandwich panels with composite face sheets showing the effects of variation in their geometric and material parameters on the accuracy of the free vibration response, and the sensitivity coefficients predicted by eight different modeling approaches (based on two-dimensional theories). The standard of comparison is taken to be the analytic three-dimensional thermoelasticity solutions. Some future directions for research on the modeling of sandwich plates and shells are outlined.


Sign in / Sign up

Export Citation Format

Share Document