Non-stationary radiotracer method for diffusion coefficients of Cs+, Ba2+, Eu3+ tracers in Nafion-117 membrane

2017 ◽  
Vol 52 (14) ◽  
pp. 2379-2384 ◽  
Author(s):  
Apurva N. Naik ◽  
Chhavi Agarwal ◽  
Sanhita Chaudhury ◽  
A. Goswami
Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


2019 ◽  
Vol 70 (11) ◽  
pp. 3903-3907
Author(s):  
Galina Marusic ◽  
Valeriu Panaitescu

The paper deals with the issues related to the pollution of aquatic ecosystems. The influence of turbulence on the transport and dispersion of pollutants in the mentioned systems, as well as the calculation of the turbulent diffusion coefficients are studied. A case study on the determination of turbulent diffusion coefficients for some sectors of the Prut River is presented. A new method is proposed for the determination of the turbulent diffusion coefficients in the pollutant transport equation for specific sectors of a river, according to the associated number of P�clet, calculated for each specific area: the left bank, the right bank and the middle of the river.


Sign in / Sign up

Export Citation Format

Share Document