The Study of Liquid Suspensions of Iron Oxide Particles with a Magnetic Field-Flow Fractionation Device

1984 ◽  
Vol 19 (13-15) ◽  
pp. 1073-1085 ◽  
Author(s):  
J. Gorse ◽  
T. C. Schunk ◽  
M. F. Burke
2009 ◽  
Vol 50 ◽  
pp. S195-S196
Author(s):  
J.R. Zuchini ◽  
C.H. Huang ◽  
S.C. Huang ◽  
Y.H. Shih ◽  
H.W. Tsai ◽  
...  

2005 ◽  
Vol 877 ◽  
Author(s):  
Derek Halverson ◽  
Ben Yellen ◽  
Gary Friedman

AbstractA novel method is proposed whereby non-magnetic objects can be moved along a surface at the microscale and nanoscale. It uses a negative magnetophoretic force, explained in the caption for figure one, on the non-magnetic objects which results from stabilized 10nm diameter iron oxide particles (ferrofluid) being attracted to regions of field maxima around magnetic islands on a surface, which pushes the non-magnetic objects to regions of field minima. By varying an external magnetic field we can control where these minima are and thus control how objects will position themselves with static fields and by using rotating time varying fields we can control how they move across the surface. This method does not require the objects to be initially in contact with the surface, as they will be pulled down to the surface from solution. While this paper deals with beads, any arbitrarily shaped object should be manipuable using this method. Additionally, while we address non-magnetic objects in this work similar methods could easily manipulate objects that are magnetic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246124
Author(s):  
Oladunni B. Adeyiga ◽  
Coleman Murray ◽  
Hector E. Muñoz ◽  
Alberto Escobar ◽  
Dino Di Carlo

Magnetic ratcheting cytometry is a promising approach to separate magnetically-labeled cells and magnetic particles based on the quantity of magnetic material. We have previously reported on the ability of this technique to separate magnetically-labeled cells. Here, with a new chip design, containing high aspect ratio permalloy micropillar arrays, we demonstrate the ability of this technique to rapidly concentrate and collect superparamagnetic iron oxide particles. The platform consists of a mechatronic wheel used to generate and control a cycling external magnetic field that impinges on a “ratcheting chip.” The ratcheting chip is created by electroplating a 2D array of high aspect ratio permalloy micropillars onto a glass slide, which is embedded in a thin polymer layer to create a planar surface above the micropillars. By varying magnetic field frequency and direction through wheel rotation rate and angle, we direct particle movement on chip. We explore the operating conditions for this system, identifying the effects of varying ratcheting frequency, along with time, on the dynamics and resulting concentration of these magnetic particles. We also demonstrate the ability of the system to rapidly direct the movement of superparamagnetic iron oxide particles of varying sizes. Using this technique, 2.8 μm, 500 nm, and 100 nm diameter superparamagnetic iron oxide particles, suspended within an aqueous fluid, were concentrated. We further define the ability of the system to concentrate 2.8 μm superparamagnetic iron oxide particles, present in a liquid suspension, into a small chip surface area footprint, achieving a 100-fold surface area concentration, and achieving a concentration factor greater than 200%. The achieved concentration factor of greater than 200% could be greatly increased by reducing the amount of liquid extracted at the chip outlet, which would increase the ability of achieving highly sensitive downstream analytical techniques. Magnetic ratcheting-based enrichment may be useful in isolating and concentrating subsets of magnetically-labeled cells for diagnostic automation.


2017 ◽  
Vol 23 (7) ◽  
pp. 412-421 ◽  
Author(s):  
Martin Kluge ◽  
Annekatrin Leder ◽  
Karl H. Hillebrandt ◽  
Benjamin Struecker ◽  
Dominik Geisel ◽  
...  

2021 ◽  
Vol 23 (3) ◽  
pp. 1248-1258
Author(s):  
Shannon M. North ◽  
Steven P. Armes

An atom-efficient, wholly aqueous one-pot synthesis of zwitterionic diblock copolymers has been devised. Such copolymers can serve as highly effective aqueous dispersants for nano-sized transparent yellow iron oxide particles.


Sign in / Sign up

Export Citation Format

Share Document