Seed Oil ofBrucea javanicaInduces Cell Cycle Arrest and Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction in Human Lung Cancer Cells

2016 ◽  
Vol 68 (8) ◽  
pp. 1394-1403 ◽  
Author(s):  
Daxuan Wang ◽  
Xueqin Qu ◽  
Xibin Zhuang ◽  
Guojun Geng ◽  
Jihuan Hou ◽  
...  
2007 ◽  
Vol 120 (10) ◽  
pp. 905-909 ◽  
Author(s):  
Hong-li LI ◽  
Tong-shan WANG ◽  
Xiao-yu LI ◽  
Nan LI ◽  
Ding-zhi HUANG ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xin-Mei Lin ◽  
Shao-Bin Liu ◽  
Ying-Hua Luo ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase, p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a potential therapy for human lung cancer.


2019 ◽  
Vol 51 (7) ◽  
Author(s):  
Jae-Rin Lee ◽  
Jong-Yoon Lee ◽  
Hyun-Ji Kim ◽  
Myong-Joon Hahn ◽  
Jong-Sun Kang ◽  
...  

AbstractChloride intracellular channel 1 (CLIC1) is a promising therapeutic target in cancer due to its intrinsic characteristics; it is overexpressed in specific tumor types and its localization changes from cytosolic to surface membrane depending on activities and cell cycle progression. Ca2+ and reactive oxygen species (ROS) are critical signaling molecules that modulate diverse cellular functions, including cell death. In this study, we investigated the function of CLIC1 in Ca2+ and ROS signaling in A549 human lung cancer cells. Depletion of CLIC1 via shRNAs in A549 cells increased DNA double-strand breaks both under control conditions and under treatment with the putative anticancer agent chelerythrine, accompanied by a concomitant increase in the p-JNK level. CLIC1 knockdown greatly increased basal ROS levels, an effect prevented by BAPTA-AM, an intracellular calcium chelator. Intracellular Ca2+ measurements clearly showed that CLIC1 knockdown significantly increased chelerythrine-induced Ca2+ signaling as well as the basal Ca2+ level in A549 cells compared to these levels in control cells. Suppression of extracellular Ca2+ restored the basal Ca2+ level in CLIC1-knockdown A549 cells relative to that in control cells, implying that CLIC1 regulates [Ca2+]i through Ca2+ entry across the plasma membrane. Consistent with this finding, the L-type Ca2+ channel (LTCC) blocker nifedipine reduced the basal Ca2+ level in CLIC1 knockdown cells to that in control cells. Taken together, our results demonstrate that CLIC1 knockdown induces an increase in the intracellular Ca2+ level via LTCC, which then triggers excessive ROS production and consequent JNK activation. Thus, CLIC1 is a key regulator of Ca2+ signaling in the control of cancer cell survival.


2015 ◽  
Vol 21 (4) ◽  
pp. 282 ◽  
Author(s):  
Ju Hee Park ◽  
Tae Hwan Noh ◽  
Haibo Wang ◽  
Nam Deuk Kim ◽  
Jee H. Jung

Life Sciences ◽  
2004 ◽  
Vol 75 (23) ◽  
pp. 2829-2839 ◽  
Author(s):  
Eun-Jin Lee ◽  
Hye-Young Min ◽  
Hyen Joo Park ◽  
Hwa-Jin Chung ◽  
Sanghee Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document