AIR EXPOSURE CAUSES OXIDATIVE STRESS IN CULTURED BOVINE TRACHEAL EPITHELIAL CELLS AND PRODUCES A CHANGE IN CELLULAR GLUTATHIONE SYSTEMS

2003 ◽  
Vol 29 (8) ◽  
pp. 567-583 ◽  
Author(s):  
Shinkichi Kameyama ◽  
Mitsuko Kondo ◽  
Kiyoshi Takeyama ◽  
Atsushi Nagai
Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1311
Author(s):  
Shu-Ju Wu ◽  
Chian-Jiun Liou ◽  
Ya-Ling Chen ◽  
Shu-Chen Cheng ◽  
Wen-Chung Huang

Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.


2016 ◽  
Vol 11 (1) ◽  
pp. 59-63
Author(s):  
Jian Zou ◽  
Jinbo Yu ◽  
Yuqing Zhu ◽  
Jiali Zhu ◽  
Jing Du ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 617 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chien-Yu Liu ◽  
Szu-Chuan Shen ◽  
Li-Chen Chen ◽  
Kuo-Wei Yeh ◽  
...  

Licochalcone A was isolated from Glycyrrhiza uralensis and previously reported to have antitumor and anti-inflammatory effects. Licochalcone A has also been found to inhibit the levels of Th2-associated cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. However, the molecular mechanism underlying airway inflammation and how licochalcone A regulates oxidative stress in asthmatic mice are elusive. In this study, we investigated whether licochalcone A could attenuate inflammatory and oxidative responses in tracheal epithelial cells, and whether it could ameliorate oxidative stress and airway inflammation in asthmatic mice. Inflammatory human tracheal epithelial (BEAS-2B) cells were treated with licochalcone A to evaluate oxidative responses and inflammatory cytokine levels. In addition, BALB/c mice were sensitized with ovalbumin (OVA) and injected intraperitoneally with licochalcone A (5 or 10 mg/kg). Licochalcone A significantly inhibited reactive oxygen species, eotaxin, and proinflammatory cytokines in BEAS-2B cells. Licochalcone A also decreased intercellular adhesion molecule 1 levels in inflammatory BEAS-2B cells, blocking monocyte cell adherence. We also found that licochalcone A significantly decreased oxidative responses, reduced malondialdehyde levels, and increased glutathione levels in the lungs of OVA-sensitized mice. Furthermore, licochalcone A decreased airway hyper-responsiveness, eosinophil infiltration, and Th2 cytokine production in the BALF. These findings suggest that licochalcone A alleviates oxidative stress, inflammation, and pathological changes by inhibiting Th2-associated cytokines in asthmatic mice and human tracheal epithelial cells. Thus, licochalcone A demonstrated therapeutic potential for improving asthma.


1998 ◽  
Vol 275 (3) ◽  
pp. L502-L508 ◽  
Author(s):  
A. Churg ◽  
J.-P. Sun ◽  
K. Zay

Binding of asbestos fibers to the cell surface appears to be important in the initiation of intracellular signaling events as well as in initiation of particle uptake by the cell. We have previously shown that cigarette smoke increases the uptake of asbestos fibers by tracheal epithelial cells in explant culture. Whether smoke acts by increasing surface binding of fibers is not known. In this study, we exposed rat tracheal explants to air or cigarette smoke and then to a suspension of amosite asbestos. Explants were harvested after 1 or 24 h of dust exposure and washed by repeated dips in culture medium to remove loosely bound fibers, and the number of fibers adhering to the apical cell surfaces was determined by scanning electron microscopy. Smoke-exposed explants retained significantly more surface fibers than air-exposed explants. After four washes, binding levels were similar at 1 and 24 h. The smoke effect was still present when incubations were carried out at 4°C, but binding was decreased ∼25%. Preincubation of the asbestos fibers with iron chloride to increase surface iron increased fiber binding in both air- and smoke-exposed explants, whereas preincubation of the fibers with the iron chelator deferoxamine decreased binding after air exposure and completely eliminated the smoke effect. Inclusion of mannitol or catalase in the medium or preincubation of the explants with GSH produced decreases in binding of 10–25% in air-exposed explants and generally greater decreases in smoke-exposed explants. We conclude that 1) amosite binding is a very rapid process that does not require active cellular metabolism, 2) cigarette smoke increases adhesion of fibers to the epithelial surfaces, and 3) iron on the asbestos fiber appears to play an important role in binding, probably through an active oxygen species-mediated process.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wen-Chung Huang ◽  
Nai-Chun Ting ◽  
Yu-Ling Huang ◽  
Li-Chen Chen ◽  
Chwan-Fwu Lin ◽  
...  

Helminthostachys zeylanica is a traditional folk herb used to improve inflammation and fever in Taiwan. Previous studies showed that H. zeylanica extract could ameliorate lipopolysaccharide-induced acute lung injury in mice. The aim of this study was to investigate whether H. zeylanica water (HZW) and ethyl acetate (HZE) extracts suppressed eosinophil infiltration and airway hyperresponsiveness (AHR) in asthmatic mice, and decreased the inflammatory response and oxidative stress in tracheal epithelial cells. Human tracheal epithelial cells (BEAS-2B cells) were pretreated with various doses of HZW or HZE (1 μg/ml–10 μg/ml), and cell inflammatory responses were induced with IL-4/TNF-α. In addition, female BALB/c mice sensitized with ovalbumin (OVA), to induce asthma, were orally administered with HZW or HZE. The result demonstrated that HZW significantly inhibited the levels of proinflammatory cytokines, chemokines, and reactive oxygen species in activated BEAS-2B cells. HZW also decreased ICAM-1 expression and blocked monocytic cells from adhering to inflammatory BEAS-2B cells in vitro. Surprisingly, HZW was more effective than HZE in suppressing the inflammatory response in BEAS-2B cells. Our results demonstrated that HZW significantly decreased AHR and eosinophil infiltration, and reduced goblet cell hyperplasia in the lungs of asthmatic mice. HZW also inhibited oxidative stress and reduced the levels of Th2 cytokines in bronchoalveolar lavage fluid. Our findings suggest that HZW attenuated the pathological changes and inflammatory response of asthma by suppressing Th2 cytokine production in OVA-sensitized asthmatic mice.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2002 ◽  
Vol 43 (1) ◽  
pp. 27-27 ◽  
Author(s):  
CAROLE KUGEL ◽  
ISABELLE BAILLY ◽  
FRANÇOISE TOURDES ◽  
JEAN-LUC PONCY

Sign in / Sign up

Export Citation Format

Share Document