Selection of carcinogen-altered rat tracheal epithelial cells preexposed to 7,12-dimethylbenz[a]anthracene by their loss of a need for pyruvate to survive in culture

1984 ◽  
Vol 5 (6) ◽  
pp. 789-796 ◽  
Author(s):  
Ann C. Marchok ◽  
Shilling F. Huang ◽  
Donald H. Martin
1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1311
Author(s):  
Shu-Ju Wu ◽  
Chian-Jiun Liou ◽  
Ya-Ling Chen ◽  
Shu-Chen Cheng ◽  
Wen-Chung Huang

Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.


2002 ◽  
Vol 43 (1) ◽  
pp. 27-27 ◽  
Author(s):  
CAROLE KUGEL ◽  
ISABELLE BAILLY ◽  
FRANÇOISE TOURDES ◽  
JEAN-LUC PONCY

1987 ◽  
Vol 7 (11) ◽  
pp. 4017-4023 ◽  
Author(s):  
H L Smits ◽  
E E Floyd ◽  
A M Jetten

A cDNA library was constructed from polyadenylated RNA present in squamous differentiated rabbit tracheal epithelial cells. Screening of the cDNA library was aimed at identifying RNAs that were abundant in squamous cells and expressed at low levels in undifferentiated cells. Two different recombinants were obtained containing inserts, 0.86 and 0.77 kilobases (kb) in size, that hybridized to mRNAs 1.0 and 1.25 kb in length. These RNAs were present at approximately 50-fold higher levels in squamous cells than in proliferative or confluent retinoic acid-treated cells. The increase in the levels of the 1.0- and 1.25-kb RNAs correlated closely with the onset of squamous differentiation and was not related to induction of terminal cell division. Treatment of rabbit tracheal epithelial cells with transforming growth factor beta, which induces squamous differentiation in these cells, also resulted in elevated levels of the 1.0- and 1.25-kb RNAs. The increased levels of these RNAs in squamous cells appeared to a large extent to be regulated at a posttranscriptional level. Retinoic acid not only inhibited the increase in the levels of the 1.0- and 1.25-kb RNAs but also reversed the expression of these RNAs in squamous cells. These results suggest that retinoic acid affects, directly or indirectly, molecular events that induce alterations in the posttranscriptional processing of the transcripts corresponding to the 1.0- and 1.25-kb RNAs.


2010 ◽  
Vol 23 (11) ◽  
pp. 1673-1681 ◽  
Author(s):  
Odile Cabaret ◽  
Olivier Puel ◽  
Françoise Botterel ◽  
Michel Pean ◽  
Khaled Khoufache ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document