Micronutrients through foliar application enhance growth, yield and quality of sugar beet (Beta vulgaris L.)

2020 ◽  
Vol 43 (15) ◽  
pp. 2275-2285
Author(s):  
R. M. Y. Zewail ◽  
I. S. El-Gmal ◽  
Botir Khaitov ◽  
Heba S. A. El-Desouky
2021 ◽  
Vol 42 (2) ◽  
pp. 326-331
Author(s):  
M. Singh ◽  
◽  
K.S. Sandhu ◽  

Aim: To determine the impact of soil and foliar application of ZnSO4.7H2O at late stages of wheat as heading initiation (5% ear formation), 100% heading (complete ear formation) and heading initiation and 100% heading along with recommended dose of fertilizer on growth, yield and quality of zero till wheat. Methodology: The field experiment was conducted on zero till wheat. The treatments consisted of control (no Zn), soil application of 12.5, 25, 37.5, 50 kg ha-1 ZnSO4.7H2O and foliar application of 0.5% Zn as one spray at heading initiation (5% ear formation), one spray at 100% heading (complete ear formation) and two sprays at heading initiation and 100% heading with recommended dose of fertilizer. These treatments were evaluated in RBD with three replications. Results: Soil application of 50, 37.5 and 25 kg Zn ha-1 with two foliar sprays of 0.5% at heading initiation (5% ear formation) and 100% heading (complete ear formation) stages gave significantly higher average grain and straw yield and Zn concentration in grain than other treatments, including control. Interpretation: Enhanced application of Zn as soil and foliar application ameliorates soil Zn deficiency and increases protein content in grains, which might influence the quality and yield of zero tilled wheat. Key words: Foliar spray, Grain yield, Wheat, Zinc


2012 ◽  
Vol 26 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen E. McNaughton

Trials were established in 2007, 2008, and 2009 in Ontario, Canada, to determine the effect of soil residues of saflufenacil on growth, yield, and quality of eight rotational crops planted 1 yr after application. In the year of establishment, saflufenacil was applied PRE to field corn at rates of 75, 100, and 200 g ai ha−1. Cabbage, carrot, cucumber, onion, pea, pepper, potato, and sugar beet were planted 1 yr later, maintained weed-free, and plant dry weight, yield, and quality measures of interest to processors for each crop were determined. Reductions in dry weight and yield of all grades of cucumber were determined at both the 100 and 200 g ha−1rates of saflufenacil. Plant dry weight, bulb number, and size and yield of onion were also reduced by saflufenacil at 100 and 200 g ha−1. Sugar beet plant dry weight and yield, but not sucrose content, were decreased by saflufenacil at 100 and 200 g ha−1. Cabbage plant dry weight, head size, and yield; carrot root weight and yield; and pepper dry weight, fruit number and size, and yield were only reduced in those treatments in which twice the field corn rate had been applied to simulate the effect of spray overlap in the previous year. Pea and potato were not negatively impacted by applications of saflufenacil in the year prior to planting. It is recommended that cabbage, carrot, cucumber, onion, pepper, and sugar beet not be planted the year after saflufenacil application at rates up to 200 g ha−1. Pea and potato can be safely planted the year following application of saflufenacil up to rates of 200 g ha−1.


2016 ◽  
Vol 73 (4) ◽  
pp. 597
Author(s):  
Puskar Chaudhary ◽  
R.A. Kaushik ◽  
R.S. Rathore ◽  
M. Sharma ◽  
M.K. Kaushik

Sign in / Sign up

Export Citation Format

Share Document