Effects of aluminum on the growth and element composition of 20 winter cultivars of Triticum aestivum L. (wheat) grown in solution culture

1985 ◽  
Vol 8 (9) ◽  
pp. 811-824 ◽  
Author(s):  
Gregory J. Taylor ◽  
Charles D. Foy
1995 ◽  
Vol 175 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Petter Oscarson ◽  
Tomas Lundborg ◽  
Marie Larsson ◽  
Carl-Magnus Larsson

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79 ◽  
Author(s):  
Paula Pongrac ◽  
Iztok Arčon ◽  
Hiram Castillo-Michel ◽  
Katarina Vogel-Mikuš

In wheat (Triticum aestivum L.), the awns—the bristle-like structures extending from lemmas—are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied. Nine awned and 11 awnletted cultivars were grown simultaneously in the field. With no difference in 1000-grain weight, a larger calcium and manganese—but smaller iron (Fe) concentrations—were found in whole grain of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues of frozen-hydrated grain cross-sections revealed that differences in total Fe concentration were not accompanied by differences in Fe speciation (64% of Fe existed as ferric and 36% as ferrous species) or Fe ligands (53% were phytate and 47% were non-phytate ligands). In contrast, there was a distinct tissue-specificity with pericarp containing the largest proportion (86%) of ferric species and nucellar projection (49%) the smallest. Phytate ligand was predominant in aleurone, scutellum and embryo (72%, 70%, and 56%, respectively), while nucellar projection and pericarp contained only non-phytate ligands. Assuming Fe bioavailability depends on Fe ligands, we conclude that Fe bioavailability from wheat grain is tissue specific.


1988 ◽  
Vol 66 (4) ◽  
pp. 694-699 ◽  
Author(s):  
Gregory J. Taylor

An aluminum-tolerant cultivar ('Atlas-66') and an aluminum-sensitive cultivar ('Scout-66') of Triticum aestivum L. were grown in solution culture under conditions of varying [Formula: see text] and [Formula: see text] supply with or without 75 μM aluminum. Plants grown with a low [Formula: see text] ratio in solution maintained a higher solution pH than plants grown with a high [Formula: see text] ratio. Although root growth of 'Scout-66' was greater under high [Formula: see text], high solution pH conditions, the relative tolerance of the cultivars to Al was unaffected by the [Formula: see text] ratio and by solution pH. The superior Al tolerance of 'Atlas-66' could not be explained solely by its ability to maintain a high solution pH in mixed nitrogen solutions.


2016 ◽  
Vol 51 (3) ◽  
pp. 327-334
Author(s):  
А.С. РУДАКОВА ◽  
◽  
С.В. РУДАКОВ ◽  
Н.В. ДАВЫДОВА ◽  
Г.В. МИРСКАЯ ◽  
...  

2018 ◽  
Vol 53 (3) ◽  
pp. 578-586 ◽  
Author(s):  
P.N. Tsygvintsev ◽  
◽  
L.I. Goncharova ◽  
K.V. Manin ◽  
V.M. Rachkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document