Regression Modeling of Ozonation Process in Wastewater Treatment Plants for Reduction of Waste Activated Sludge

2014 ◽  
Vol 36 (5) ◽  
pp. 451-464 ◽  
Author(s):  
Ege Egemen Richardson ◽  
Adrian Thomas Hanson
2006 ◽  
Vol 53 (12) ◽  
pp. 177-186 ◽  
Author(s):  
D. Bolzonella ◽  
P. Pavan ◽  
P. Battistoni ◽  
F. Cecchi

This paper deals with the performances obtained in full scale anaerobic digesters co-digesting waste activated sludge from biological nutrients removal wastewater treatment plants, together with different types of organic wastes (solid and liquid). Results showed that the biogas production can be increased from 4,000 to some 18,000 m3 per month when treating some 3–5 tons per day of organic municipal solid waste together with waste activated sludge. On the other hand, the specific biogas production was improved, passing from 0.3 to 0.5 m3 per kgVS fed the reactor, when treating liquid effluents from cheese factories. The addition of the co-substrates gave minimal increases in the organic loading rate while the hydraulic retention time remained constant. Further, the potentiality of the struvite crystallisation process for treating anaerobic supernatant rich in nitrogen and phosphorus was studied: 80% removal of phosphorus was observed in all the tested conditions. In conclusion, a possible layout is proposed for designing or up-grading wastewater treatment plants for biological nutrients removal process.


Author(s):  
Bilge Alpaslan Kocamemi ◽  
Halil Kurt ◽  
Ahmet Sait ◽  
Fahriye Sarac ◽  
Ahmet Mete Saatci ◽  
...  

Following the announcement of SARS-CoV-2 worldwide pandemic spread by WHO on March 11, 2020, wastewater based epidemiology received great attention in several countries: The Netherlands [Medama et al., 2020; K-Lodder et al., 2020], USA [Wu et al., 2020; Memudryi et al., 2020], Australia [Ahmed et al., 2020], France [Wurtzer et al., 2020], China [Wang et al., 2020], Spain [Randazzo et al., 2020; Walter et al., 2020], Italy (La Rosa et al., 2020; Rimoldi et al., 2020) and Israel [Or et al., 2020], performed analysis in wastewaters by using different virus concentration techniques. Turkey took its place among these countries on 7th of May, 2020 by reporting SARS-CoV-2 RT-qPCR levels at the inlet of seven (7) major municipal wastewater treatment plants (WWTPs) of Istanbul [Alpaslan Kocamemi et al., 2020], which is a metropole with 15.5 million inhabitants and a very high population density (2987 persons/km2) and having about 65 % of Covid-19 cases in Turkey. Sludges that are produced in WWTPs should be expected to contain SARS-CoV-2 virus as well. There has not yet been any study for the fate of SAR-CoV-2 in sludges generated from WWTPs. Knowledge about the existing of SARS-CoV-2 in sludge may be useful for handling the sludge during its dewatering, stabilizing and disposal processes. This information will also be valuable in case of sludges that are used as soil conditioners in agriculture or sent to landfill disposal. In wastewater treatment plants, generally two different types of sludges are generated; primary sludge (PS) and waste activated sludge (WAS). PS forms during the settling of wastewater by gravity in the primary settling tanks. Little decomposition occurs during primary sludge formation. Since most of the inorganic part of the wastewater is removed in the earlier grit removal process, the PS consists of mainly organic material that settles. The PS is about 1-2 % solids by weight. In the biological treatment part of the WWTPs, the biomass that forms in the anaerobic, anoxic and oxic zones of the process is settled in final clarifiers by gravity and returned to the beginning of the biological process so that it is not washed off. The waste activated sludge (WAS) is the excess part of the biomass that grows in this secondary treatment process. It has to be removed from the process not to increase the mixed liquor suspended solids concentration (bacteria concentration) in the secondary process more than a fixed value. The WAS is about 0.6 - 0.9 % solids by weight. This work aims to find whether SARS-CoV-19 is present in the PS and WAS before it is dewatered and sent to anaerobic or aerobic digester processes or to thermal drying operations. For this purpose, on the 7th of May 2020, two (2) PS samples were collected from Ambarlı and Tuzla WWTPs, seven (7) WAS samples were collected from Terkos, Ambarlı, Atakoy I & II, Pasakoy II, Buyukcekmece and Tuzla I WWTPs. Polyethylene glycol 8000 (PEG 8000) adsorption [Wu et al., 2020] SARS-Cov-2 concentration method was used for SARS-CoV-2 concentration after optimization. [Alpaslan Kocamemi et al., 2020]. Real time RT-PCR diagnostic panel validated by US was used to quantify SARS-CoV-2 RNA in primary and waste activated sludge samples taken from WWTPs in Istanbul. All samples were tested positive. Titers of SARS-CoV-2 have been detected ranging copies between 1.17E4 to 4.02x104 per liter.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


Author(s):  
Hisashi Satoh ◽  
Yukari Kashimoto ◽  
Naoki Takahashi ◽  
Takashi Tsujimura

A deep learning-based two-label classifier 1 recognized a 20% morphological change in the activated flocs. Classifier-2 quantitatively recognized an abundance of filamentous bacteria in activated flocs.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 223-229 ◽  
Author(s):  
Frédéric Clauss ◽  
Christel Balavoine ◽  
Delphine Hélaine ◽  
Gaëtan Martin

Forest industry wastewaters are difficult to clean: hydraulic and organic load variations, filamentous bulking or pin-point flocs negatively impact depollution processes. The addition of a fine, mineral, talc-based powder, Aquatal, into the aeration tanks of wastewater treatment plants connected to pulp and paper factories has been successfully tested since end of '97. The first case-study presents full results obtained over a period of 18 months in a 20,000 p.e. plant connected to a paper factory. The mineral powder was regularly added to control sludge volume index, thereby ensuring low suspended solids concentration in the outfluent. Plant operators could easily adapt biomass concentration to match organic load variation, thereby maintaining pollution micro-organisms ratio constant. In a second case study, a trouble-shooting strategy was implemented to counteract filamentous bulking. A one-off, large dosage enabled the plant operator to deal effectively with poor settleability sludge and rapidly control sludge blanket expansion. In both cases, the main common characteristics observed were an increase in floc aggregation and the production of heavier and well-structured flocs. The sludge settling velocity increased and an efficient solid/liquid separation was obtained. After a few days, the mineral particles of Aquatal were progressively integrated into the sludge floc structure. When the mineral powder was added to the activated sludge in the aeration basin, chemical interactions frequently encountered with other wastewater treatment additives did not pose a problem. Moreover, with this mineral additive, the biological excess sludge displayed good thickening properties and dewatering was improved. Despite the addition of the insoluble mineral particles, the amount of wet sludge expelled did not increase. Aquatal offers a rapid solution to floc settleability problems which so frequently arise when physical or biological disorders appear in forest industry wastewater treatment plants.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


Sign in / Sign up

Export Citation Format

Share Document