Study on the pressure drop of crude oil-water with surfactant flow in porous media

Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  
2014 ◽  
Vol 348 ◽  
pp. 139-146 ◽  
Author(s):  
Ashkan Sehat ◽  
Hani Sadrhosseini ◽  
M. Behshad Shafii

This work presents an experimental study of the effect of a magnetic field on laminar forced convection of a ferrofluid flowing in a tube filled with permeable material. The walls of the tube are subjected to a uniform heat flux and the permeable bed consists of uniform spheres of 3-mm diameter. The ferrofluid synthesis is based on reacting iron (II) and iron (III) in an aqueous ammonia solution to form magnetite, Fe3O4. The magnetite is mixed with aqueous tetra methyl ammonium hydroxide, (CH3)4NOH, solution. The dependency of the pressure drop on the volume fraction, and comparison of the pressure drop and the temperature distribution of the tube wall is studied. Also comparison of the wall temperature distribution, convection heat transfer coefficient and the Nusselt numbers of ferrofluids with different volume fractions is investigated for various Reynolds numbers (147 < Re < 205 ). It is observed that the heat transfer is enhanced by using a porous media, increasing the volume fraction had a similar effect. The pressure coefficient decreases for higher Reynolds number. The effect of magnetic field in four strategies, named modes, on ferrofluid flow through the porous media is presented.


2006 ◽  
Vol 29 (2) ◽  
pp. 227-238 ◽  
Author(s):  
K.A. Culligan ◽  
D. Wildenschild ◽  
B.S.B. Christensen ◽  
W.G. Gray ◽  
M.L. Rivers

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Mojtaba Kanani ◽  
Amir Hossein Mohammadi Alamooti ◽  
Mohammad Hossein Ghazanfari ◽  
Cyrus Ghotbi

Abstract Despite numerous studies, fundamental understanding of how pore-level displacements in heavy crude oil–water/chemicals systems are controlled by ultrasonic radiation is not well understood, especially for heterogeneous porous media. In this study, a series of water/chemical flooding were performed on a heterogeneous rock-look-alike micromodel, which was initially saturated with the crude oil, and the pore-level displacements in the presence of ultrasounds are investigated. It has been observed that although the ultrasounds improve the recovery of oil adhered to the pores’ walls, the bypassed oil in the case of injection of surfactant and polymer solutions is relatively high. For the case of water injection, depending on frequency, the ultrasounds can profoundly improve the recovery efficiency up to 17% in comparison to the absence of ultrasounds by peristaltic movement of oil on the walls and forming the ganglia in invading phase, which first affect the minor fingers and then influence the major fingers by developing them through the untouched pores. In addition, some analyses on fingers development during water/chemical injections are presented. The results of this work help to better understand the role of ultrasound on displacement patterns in crude oil–water/chemical systems.


2018 ◽  
Vol 126 (2) ◽  
pp. 501-519 ◽  
Author(s):  
M. A. Endo Kokubun ◽  
F. A. Radu ◽  
E. Keilegavlen ◽  
K. Kumar ◽  
K. Spildo

2021 ◽  
Author(s):  
Javad Bezaatpour ◽  
Esmaeil Fatehifar ◽  
Ali Rasoulzadeh

Abstract Knowledge of porous media structure is an essential part of the hydrodynamic investigation of fluid flow in porous media. To study soil behavior (as a granular porous media) and water and contaminant movement in the vadose zone, appropriate estimation of soil water retention curve (SWRC) and soil hydraulic conductivity curve (SHCC) has a pivotal role and is one of the most challenging topics for researchers and engineers in soil and water science. The SWCR can be approximated using an accurate particle size distribution (PSD) function. In this study by applying random close packing (RCP) method as an encouraging method for predicting and studying particle configuration, an optimal particle size distribution is developed for coarse-grained soils (0.025 mm < PSD < 3.35mm). The mentioned RCP is generated using heuristic algorithm with merging applicable equations of soil science. For porous media modeling, MATLAB software is used and the predicted results by the optimal model for the parameters of porosity, pressure drop, and saturated hydraulic conductivity are compared with laboratory measurements. Experimental design is conducted by MINITAB and predicted coarse-grained soils structure by the model is compared with 4 sifted soils. The results of the sensitivity analysis showed that the porosity obtained from the model is strongly sensitive to the resolution factor and should be chosen with a sufficiently large amount (higher than 250). Results showed good consistency (up to 95%) between predicted porosity and only 10% difference in pressure drop and permeability with observed measurements.


Fuel ◽  
2016 ◽  
Vol 176 ◽  
pp. 222-236 ◽  
Author(s):  
Abbas Zeinijahromi ◽  
Rouhi Farajzadeh ◽  
J. (Hans) Bruining ◽  
Pavel Bedrikovetsky

2021 ◽  
Vol 2021 ◽  
Author(s):  
Steffen Berg ◽  
◽  
Evren Unsal

Multiphase flow in porous media systems is a critical element of many processes in the energy industry. The characteristics of the simultaneous flow of the immiscible phases can be quantified using relative permeability relations. In geoscience applications, these relations are determined in coreflooding studies that often comprise coreflood tests of oil–water mixtures performed on centimetre-scale rock samples. The outcomes of these are subject to uncertainty, which ultimately influences how accurately the parameters from small-scale tests translate to the upscaled estimations. To assess this uncertainty, Shell researchers have developed an inverse modelling workflow for the uncertainty analysis of relative permeability functions derived from coreflood tests. The results suggest that, even at a small scale, the uncertainty can be significant.


Sign in / Sign up

Export Citation Format

Share Document