scholarly journals Reservoir-type water source vulnerability assessment: a case study of the Yuqiao Reservoir, China

Author(s):  
Ying Zhang ◽  
Kai Zhang ◽  
Zhiguang Niu
2011 ◽  
Vol 356-360 ◽  
pp. 2367-2371
Author(s):  
Chun Fen Zeng ◽  
La Chun Wang ◽  
Feng Tai Zhang ◽  
Wei Wang

Abstract. Based on the twenty years’ hydrologic data and water quality materials from the year 2005 to 2010, this article studies the water environment changes of reservoir type water source and the water quality protection countermeasures. Through the analysis, it founds that, with the increase of the rainfall, voluminous non-point source pollution was brought to water. The increase of rainfall runoff influences differently to the reservoir's major pollutants -TN and TP. The increase of the rainfall runoff has a dilute effect on TN; with the increase of the rainfall runoff, the TP threshold will increase.


Author(s):  
Xiaoxue Zheng ◽  
Jianling Xu ◽  
Hanxi Wang ◽  
Xuejun Liu ◽  
Difu Yao ◽  
...  

Author(s):  
Wen ◽  
Wu ◽  
Yang ◽  
Jiang ◽  
Zhong

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3−-N), nitrite-N (NO2−-N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3−-N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3−-N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3−-N and NO2−-N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1288
Author(s):  
Husam Musa Baalousha ◽  
Bassam Tawabini ◽  
Thomas D. Seers

Vulnerability maps are useful for groundwater protection, water resources development, and land use management. The literature contains various approaches for intrinsic vulnerability assessment, and they mainly depend on hydrogeological settings and anthropogenic impacts. Most methods assign certain ratings and weights to each contributing factor to groundwater vulnerability. Fuzzy logic (FL) is an alternative artificial intelligence tool for overlay analysis, where spatial properties are fuzzified. Unlike the specific rating used in the weighted overlay-based vulnerability mapping methods, FL allows more flexibility through assigning a degree of contribution without specific boundaries for various classes. This study compares the results of DRASTIC vulnerability approach with the FL approach, applying both on Qatar aquifers. The comparison was checked and validated against a numerical model developed for the same study area, and the actual anthropogenic contamination load. Results show some similarities and differences between both approaches. While the coastal areas fall in the same category of high vulnerability in both cases, the FL approach shows greater variability than the DRASTIC approach and better matches with model results and contamination load. FL is probably better suited for vulnerability assessment than the weighted overlay methods.


2011 ◽  
Vol 356-360 ◽  
pp. 2329-2332
Author(s):  
Shu Qin Gao ◽  
Yu Ming Feng

Water source heat pump system(WSHPS) is a new energy saving and environmentally air conditioning system, its degree of influence to groundwater related to the feasibility of construction of WSHPS and development & protection of regional groundwater. After introducing WSHPS, this paper analyzed the influence of WSHPS to groundwater, brought up the protection method to reduce influence. At last, a case study of new campus of Taiyuan university was carried out. The results showed that running of WSHPS won’t bring up disadvantage to groundwater environment.


Sign in / Sign up

Export Citation Format

Share Document