scholarly journals LncRNA FUNDC2P4 down-regulation promotes epithelial–mesenchymal transition by reducing E-cadherin expression in residual hepatocellular carcinoma after insufficient radiofrequency ablation

2018 ◽  
Vol 34 (6) ◽  
pp. 802-811 ◽  
Author(s):  
Jiangzheng Zeng ◽  
Xinrui Cai ◽  
Xinbao Hao ◽  
Fen Huang ◽  
Zhihui He ◽  
...  
2020 ◽  
Vol 401 (8) ◽  
pp. 985-994
Author(s):  
Haicun Wang ◽  
Yang Cao ◽  
Kaiwen Hu ◽  
Quanwang Li ◽  
Yufei Yang ◽  
...  

AbstractIncreasing evidences suggest that insufficient radiofrequency ablation (IRFA) can paradoxically promote tumor invasion and metastatic processes, whereas the effects of moderate hyperthermia on cancer progression are not well illustrated. Our study found that IRFA can increase the in vitro migration, invasion, and epithelial–mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) cells via induction of Snail, a master regulator of EMT events. Among measured miRNAs, IRFA can decrease the expression of miR-148a-5p in HCC cells. Whereas overexpression of miR-148a-5p can reverse IRFA-induced migration of HCC cells and upregulation of Snail, mechanistically overexpression of miR-148a-5p can directly target and decrease the expression of protein kinase ATM (ataxia telangiectasia mutated), which can increase protein stability of Snail. Collectively, our data suggest that IRFA can regulate the miR-148a-5p/ATM/Snail axis to trigger migration of HCC cells.


2020 ◽  
Vol 10 (4) ◽  
pp. 648-655
Author(s):  
Syarinta Adenina ◽  
Melva Louisa ◽  
Vivian Soetikno ◽  
Wawaimuli Arozal ◽  
Septelia Inawati Wanandi

Purpose : This study was intended to find out the impact of alpha mangostin administration on the epithelial-mesenchymal transition (EMT) markers and TGF-β/Smad pathways in hepatocellular carcinoma Hep-G2 cells surviving sorafenib. Methods: Hepatocellular carcinoma HepG2 cells were treated with sorafenib 10 μM. Cells surviving sorafenib treatment (HepG2surv) were then treated vehicle, sorafenib, alpha mangostin, or combination of sorafenib and alpha mangostin. Afterward, cells were observed for their morphology with an inverted microscope and counted for cell viability. The concentrations of transforming growth factor (TGF)-β1 in a culture medium were examined using ELISA. The mRNA expressions of TGF-β1, TGF-β1-receptor, Smad3, Smad7, E-cadherin, and vimentin were evaluated using quantitative reverse transcriptase–polymerase chain reaction. The protein level of E-cadherin was also determined using western blot analysis. Results: Treatment of alpha mangostin and sorafenib caused a significant decrease in the viability of sorafenib-surviving HepG2 cells versus control (both groups with P<0.05). Our study found that alpha mangostin treatment increased the expressions of vimentin (P<0.001 versus control). In contrast, alpha mangostin treatment tends to decrease the expressions of Smad7 and E-cadherin (both with P>0.05). In line with our findings, the expressions of TGF-β1 and Smad3 are significantly upregulated after alpha mangostin administration (both with P<0.05) versus control. Conclusion: Alpha mangostin reduced cell viability of sorafenib-surviving HepG2 cells; however, it also enhanced epithelial–mesenchymal transition markers by activating TGF-β/Smad pathways.


Neoplasma ◽  
2015 ◽  
Vol 62 (01) ◽  
pp. 1-15 ◽  
Author(s):  
H. YU ◽  
Y. SHEN ◽  
J. HONG ◽  
Q. XIA ◽  
F. ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document