Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers

2002 ◽  
Vol 29 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Kyongok Kang ◽  
L. C. Chien ◽  
S. Sprunt
1999 ◽  
Vol 559 ◽  
Author(s):  
C. Allan Guymon ◽  
Christopher N. Bowman ◽  
Christopher N. Bowman

ABSTRACTFerroelectric liquid crystals (FLCs) have shown great potential for use in electro-optic and display technology due to their inherently fast switching speeds and bistability. Recently, considerable research has been devoted to FLCs mechanically stabilized by a polymer network. The network is formed typically by in situ polymerization of a monomer dissolved in the FLC. Because of the inherent order in the FLC, the polymerization behavior may be significantly different than what might be expected in solution polymerizations. These deviations result largely from the segregation properties of the monomer in the liquid crystal. One class of monomers, namely fluorinated acrylates, is a likely candidate for inducing novel segregation, polymerization and electro-optic behavior in polymer stabilized ferroelectric liquid crystals (PSFLCs). The use of fluorinated moieties has a significant impact on the phase and polymerization behavior of liquid crystal systems. This study focuses on the polymerization of a fluorinated diacrylate, octafluoro 1,6-hexanediol diacrylate (FHDDA), to form PSFLCs and the consequent impact of the polymerization on the ultimate performance. Interestingly, as the temperature is increased and the order of the system decreases, a dramatic increase in the polymerization rate is observed. This increase is especially prominent for polymerizations in the smectic C* phase for which the rate is more than five times that exhibited at much higher temperatures in the isotropic phase. As with other monomer/FLC systems, the segregation of the monomer plays a role in this polymerization behavior as the monomer segregates between the smectic layers of the liquid crystal. The segregation properties also significantly impact the ultimate electro-optic properties. Both ferroelectric polarization and response time of the PSFLC change markedly with different polymerization temperatures, and approach values very close to those of the neat FLC under appropriate polymerization conditions. This behavior not only provides a unique mechanism for rate acceleration in PSFLCs, but also paves the way for new methods to optimize performance in these materials.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1869 ◽  
Author(s):  
Yang Zhang ◽  
Changrui Wang ◽  
Wei Zhao ◽  
Ming Li ◽  
Xiao Wang ◽  
...  

Polymer stabilized liquid crystal (PSLC) devices can be used as smart privacy windows that switch between transparent and opaque states. The polyimide alignment layer of a PSLC device is usually obtained by the treatment of polyamide acid (PAA) with temperatures over 200 °C. This hinders the fabrication of PSLC devices on flexible substrates, which melt at these high temperatures. In this work, the fabrication of a PSLC alignment layer using a lower temperature that is compatible with most flexible substrates, is demonstrated. It was found that the treatment of PAA at 150 °C could generate the same alignment for liquid crystals. Based on this, a PSLC device was successfully fabricated on a flexible polyethylene terephthalate (PET) substrate, demonstrating excellent electro-optic performances.


2020 ◽  
Vol 21 (5) ◽  
pp. 1803 ◽  
Author(s):  
Weixin Zhang ◽  
Johan Lub ◽  
Albertus P.H.J. Schenning ◽  
Guofu Zhou ◽  
Laurens T. de Haan

Temperature-responsive photonic coatings are appealing for a variety of applications, including smart windows. However, the fabrication of such reflective polymer coatings remains a challenge. In this work, we report the development of a temperature-responsive, infrared-reflective coating consisting of a polymer-stabilized cholesteric liquid crystal siloxane, applied by a simple bar coating method. First, a side-chain liquid crystal oligosiloxane containing acrylate, chiral and mesogenic moieties was successfully synthesized via multiple steps, including preparing precursors, hydrosilylation, deprotection, and esterification reactions. Products of all the steps were fully characterized revealing a chain extension during the deprotection step. Subsequently, the photonic coating was fabricated by bar-coating the cholesteric liquid crystal oligomer on glass, using a mediator liquid crystalline molecule. After the UV-curing and removal of the mediator, a transparent IR reflective polymer-stabilized cholesteric liquid crystal coating was obtained. Notably, this fully cured, partially crosslinked transparent polymer coating retained temperature responsiveness due to the presence of non-reactive liquid-crystal oligosiloxanes. Upon increasing the temperature from room temperature, the polymer-stabilized cholesteric liquid crystal coating showed a continuous blue-shift of the reflection band from 1400 nm to 800 nm, and the shift was fully reversible.


2017 ◽  
Vol 56 (20) ◽  
pp. 5731 ◽  
Author(s):  
Jongyoon Kim ◽  
Hyungmin Kim ◽  
Seongil Kim ◽  
Suseok Choi ◽  
Wonbong Jang ◽  
...  

2007 ◽  
Vol 470 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Sung-Ho Woo ◽  
Chan-Wook Jeon ◽  
Kee-Jeong Yang ◽  
Byeong-Dae Choi ◽  
Kumar Rajesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document