Use of Nanoindentation, Finite Element Simulations, and a Combined Experimental/Numerical Approach to Characterize Elastic Moduli of Individual Porous Silica Particles

2014 ◽  
Vol 33 (2) ◽  
pp. 213-218 ◽  
Author(s):  
Ronald F. Gibson ◽  
Hong-Kyu Jang ◽  
Sushir Simkhada ◽  
Qin Yu ◽  
Hyung-Ick Kim ◽  
...  
Author(s):  
Vuong Thi My Hanh ◽  
Pham Duc Chinh ◽  
Vu Lam Dong ◽  
Le Hoai Chau

Numerical finite element simulations on the homogenization problem for large random-aggregate samples of a particular 2D hexagonal-shape-geometry random polycrystals from the base crystals of orthorhombic symmetry have been performed. At sufficiently large random-aggregate samples, the scatter intervals converge toward the Voigt-Reuss-Hill bounds, and then our recently constructed bounds, which have been specified for the aggregates.


Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100795 ◽  
Author(s):  
D. Boyce ◽  
P. Shade ◽  
W. Musinski ◽  
M. Obstalecki ◽  
D. Pagan ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


2005 ◽  
Vol 32 (3-4) ◽  
pp. 463-471 ◽  
Author(s):  
A.V. Mitrofanov ◽  
V.I. Babitsky ◽  
V.V. Silberschmidt

2021 ◽  
Vol 5 (3) ◽  
pp. 75
Author(s):  
Preeti S. Shinde ◽  
Pradnya S. Suryawanshi ◽  
Kanchan K. Patil ◽  
Vedika M. Belekar ◽  
Sandeep A. Sankpal ◽  
...  

Porous silica particles have shown applications in various technological fields including their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have ordered porosity, high surface area, and good chemical stability. These interesting structural or textural properties make porous silica an attractive material for use as catalyst supports in various heterogeneous catalysis reactions. The colloidal nature of the porous silica particles is highly useful in catalytic applications as it guarantees better mass transfer properties and uniform distribution of the various metal or metal oxide nanocatalysts in solution. The catalysts show high activity, low degree of metal leaching, and ease in recycling when supported or immobilized on porous silica-based materials. In this overview, we have pointed out the importance of porous silica as catalyst supports. A variety of chemical reactions catalyzed by different catalysts loaded or embedded in porous silica supports are studied. The latest reports from the literature about the use of porous silica-based materials as catalyst supports are listed and analyzed. The new and continued trends are discussed with examples.


2012 ◽  
Vol 83 (10) ◽  
pp. 972-980 ◽  
Author(s):  
Srecko Nesic ◽  
Klaus Unruh ◽  
Wilhelm Michels ◽  
Ulrich Krupp

1996 ◽  
Vol 16 (4) ◽  
pp. 67-71 ◽  
Author(s):  
V.E. Taylor ◽  
Jian Chen ◽  
Milana Huang ◽  
T. Canfield ◽  
R. Stevens

Sign in / Sign up

Export Citation Format

Share Document