Vertical Profile of Particulate Matter Concentrations in Indoor Air (Case Study: Karaj, Iran)

2015 ◽  
Vol 33 (6) ◽  
pp. 617-620 ◽  
Author(s):  
Farah Halek
2019 ◽  
Vol 9 (18) ◽  
pp. 3660 ◽  
Author(s):  
Myung Eun Cho ◽  
Mi Jeong Kim

This study is interested in understanding the particulate matter perceptions and response behaviors of residents. The purpose of this study was to identify indoor air quality along with the response behaviors of residents in Seoul, to ascertain whether there is a difference in behaviors when particulate matter is present, according to the characteristics of residents and to grasp the nature of this difference. A questionnaire survey of 171 respondents was conducted. The questionnaire measured the indoor air quality perceived by residents, the health symptoms caused by particulate matter, residents’ response behaviors to particulate matter and the psychological attributes affecting those response behaviors. Residents of Seoul were divided into college students in their twenties, male workers in their thirties and forties and female housewives in their thirties and forties. The data were calibrated by SPSS 23 using a one-way analysis of variance (ANOVA) and multiple regression analyses. The results show that most people found particulate matter to be an important problem but were unable to do sufficient mitigation action to prevent its presence. Residents showed greater psychological stress resulting in difficulty going out than physical symptoms. The most influential factor on response behaviors was psychological attributes. Participants were aware of the risks of particulate matter but believed it to be generated by external factors; thus, they felt powerless to do anything about it, which proved to be an obstacle to response behaviors.


10.29007/z2wj ◽  
2020 ◽  
Author(s):  
Phil Lewis ◽  
Rachel Mosier ◽  
Yongwei Shan

Like buildings, nonroad construction equipment with enclosed cabs have doors and windows, and heating, ventilating, and air conditioning systems; thus, these machines have their own indoor air quality (IAQ) environment. Understanding the role of thermal comfort and air pollutants can help equipment operators manage in-cab environments to reduce health concerns and increase productivity. The objective of this case study was to collect and analyze IAQ data from the cabs of nonroad equipment as it performed real-world activities. Using state-of-the-art IAQ instrumentation, data were collected for in-cab pollutant concentration levels including carbon monoxide, carbon dioxide, and respirable particulate matter. Concentrations of carbon monoxide did not exceed published exposure limits for IAQ, but they did approach the published limits. Concentrations of CO2 frequently exceeded IAQ recommended levels for adequate ventilation. Concentrations of respirable particulate matter frequently exceeded IAQ recommended levels. The case study yielded enough information to conclude that studying IAQ in nonroad equipment cabs is necessary to improve human health, safety, and productivity for equipment operators.


2012 ◽  
Vol 5 (5) ◽  
pp. 1099-1119 ◽  
Author(s):  
S. Sanghavi ◽  
J. V. Martonchik ◽  
J. Landgraf ◽  
U. Platt

Abstract. Due to the well-defined vertical profile of O2 in the atmosphere, the strong A-band (757–774 nm) has long been used to estimate vertical distributions of aerosol/cloud from space. We extend this approach to include part of the O2 B-band (684–688 nm) as well. SCIAMACHY onboard ENVISAT is the first instrument to provide spectral data at moderate resolution (0.2–1.5 nm) in the UV/VIS/NIR including both the O2 A- and B-bands. Using SCIAMACHY specifications, we make combined use of these bands in an optimal estimation algorithm. Theoretical studies show that our algorithm is applicable both over bright and dark surfaces for the retrieval of a lognormal approximation of the vertical profile of particulate matter, in addition to its optical thickness. Synthetic studies and information content analyses prove that such a combined use provides additional information on the vertical distribution of atmospheric scatterers, attributable to differences in the absorption strengths of the two bands and their underlying surface albedos. Due to the high computational cost of the retrieval, we restrict application to real data to a case study over Kanpur through the year 2003. Comparison with AERONET data shows a commonly observed seasonal pattern of haziness, manifesting a correlation coefficient of r = 0.92 for non-monsoon monthly mean AOTs. The retrieved particulate optical thickness is found to be anti-correlated with the relative contrast of the Lambertian equivalent reflectivity (LER) at 682 nm and 755 nm by a coefficient of 0.788, confirming the hypothesis made in Sanghavi et al. (2010). Our case study demonstrates a stable physics-based retrieval of particulate matter using only SCIAMACHY data. The feasibility of our approach is enhanced by the information provided by measurements around the O2 B-band in addition to the A-band. Nonetheless, operational application to SCIAMACHY data remains challenged by radiometric uncertainties, yielding simultaneous retrieval of particle microphysical parameters impracticable and leading to over-reliance on climatological data. Addressing these issues in future instruments similar to SCIAMACHY, coupled with computational resources and speed-up of the current line-by-line radiative transfer calculations, can allow our approach to be extended to the global scale, particularly as it is not limited to dark surfaces.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Alberto Baldelli ◽  
Brett Couch ◽  
Benjamin Loosley ◽  
Karen Bartlett

AbstractIn a university library, activities typical of librarians, such as unpacking boxes, removing books from the shelves, dusting, packing boxes, cataloguing, conservation and repair, photocopying, setting materials for class, and walking in a main hallway, were found to reduce indoor air quality through the production of airborne mold spores, metal dusts, and particulate matter of different size bins. Analyzing three libraries, the activity of conservation generated 9000 spores/m3 of mold spores, nearing the exposure limit of 104 spores/m3 reported for Penicillium sp., and silver nanoparticles of about 15 µg/m3, that over 8 h would exceed the occupational exposure limit of 0.19 µg/m3. For none of the activities, the levels of particulate matter with a diameter lower than 2.5 µm (PM2.5) and 10 µm (PM10) did not exceed the 8-h time weight average limits of exposure. However, by analyzing the 5th percentile of the real-time PM10 data, values of about 1.5 mg/m3, which is concerning for occupational exposure. Measuring real-time exposures of PM could generate an estimation of levels of mold spores and metal dusts in libraries. We demonstrate a high Spearman’s rank correlation (0.70) between the 5th percentile of PM with a diameter lower than 1 µm and different metals. A high linearity (R2 = 0.85) is obtained between the total average of PM with a diameter lower than 10 µm and mold spores/m3.


2015 ◽  
Vol 25 (2) ◽  
pp. 12 ◽  
Author(s):  
B Wernecke ◽  
B Language ◽  
S.J Piketh ◽  
R.P Burger

The household combustion of solid fuels, for the purpose of heating and cooking, is an activity practiced by many people in South Africa. Air pollution caused by the combustion of solid fuels in households has a significant influence on public health. People mostaffected are those considered to be the poorest, living in low-income settlements, where burning solid fuel is the primary source of energy. Insufficient data has been collected in South Africa to quantify the concentrations of particulate emissions that peopleare exposed to, especially the respirable fraction, associated with the combustion of solid fuels. The aim of this paper is to gain an understanding of the particulate matter (PM) concentrations a person living in a typical household in a low income settlement in theSouth African Highveld is exposed to. It also seeks to demonstrate that the use of solid fuels in the household can lead to indoor air pollution concentrations reaching levels very similar to ambient PM concentrations, which could be well in excess of the NationalAmbient Air Quality Standards, representing a major national public health threat. A mobile monitoring station was used in KwaDela, Mpumalanga to measure both ambient particulate concentrations and meteorological conditions, while a range of dust/particulate monitors were used for indoor and personal particulate concentration measurements. Indoor and personal measurements are limited to the respirable fraction (PM4) as this fraction contributes significantly to the negative health impacts. The sampling for this case study took place from 7-19 August 2014. Highest particulate matter concentrations were evident during the early mornings and the early evenings, when solid fuel burning activities were at their highest. Indoor and personal daily average PM4 concentrations did not exceed the 24h National Ambient PM2.5 Standard of 65 μg/m3 nor did they exceed the 24h National Ambient PM10 Standard of 75 μg/ m3. The outdoor PM2.5 concentrations were found to be below the standards for the duration of the sampling period. The outdoor PM10 concentrations exceeded the standards for one day during the sampling period. Results indicate that, although people in KwaDelamay be exposed to ambient PM concentrations that can be non-compliant to ambient standards, the exposure to indoor air, where solid fuel is burnt, may be detrimental to their health.


2021 ◽  
Vol 13 (15) ◽  
pp. 8263
Author(s):  
Marius Bodor

An important aspect of air pollution analysis consists of the varied presence of particulate matter in analyzed air samples. In this respect, the present work aims to present a case study regarding the evolution in time of quantified particulate matter of different sizes. This study is based on data acquisitioned in an indoor location, already used in a former particulate matter-related article; thus, it can be considered as a continuation of that study, with the general aim to demonstrate the necessity to expand the existing network for pollution monitoring. Besides particle matter quantification, a correlation of the obtained results is also presented against meteorological data acquisitioned by the National Air Quality Monitoring Network. The transformation of quantified PM data in mass per volume and a comparison with other results are also addressed.


Author(s):  
Sajan Thomas ◽  
Joselin Herbert ◽  
Jacob Thottathil Varghese ◽  
C.R.K Sathish ◽  
Abdul Quadir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document