Differences in the physicochemical properties of lignins in the heartwood and sapwood of Pinus sylvestris

Author(s):  
Sergey Khviyuzov ◽  
Maria Gusakova ◽  
Konstantin Bogolitsyn ◽  
Aleksandr Volkov
2017 ◽  
Vol 37 (24) ◽  
Author(s):  
吕刚 LÜ Gang ◽  
王婷 WANG Ting ◽  
李叶鑫 LI Yexin ◽  
魏忠平 WEI Zhongping ◽  
王凯 WANG Kai

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 954
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Yuning An ◽  
Ruiqing Song

Pinus sylvestris var. mongolica is an important tree species for ecological construction and environmental restoration owing to its rapid growth rate and excellent stress resistance. Pinus sylvestris var. mongolica sphaeropsis blight is a widespread disease caused by Sphaeropsis sapinea. This study was focused on non-infected (CK) and infected (SS) Pinus sylvestris var. mongolica plants in Zhanggutai area, Liaoning Province, China. Illumina high-throughput sequencing based on the templates of sequencing-by-synthesis working with reversible terminators is a widely used approach. In the present study, systematic differences in relationships among rhizosphere soil physicochemical properties, bacterial community structure, diverse bacterial genera, and alpha diversity indices between the two categories were evaluated. The current findings are as follows: (1) Shannon’s index of SS soil was significantly higher than CK, and it was significantly lower in May than July and September (p < 0.05). (2) Non-metric multidimensional scaling (NMDS) showed a difference in bacterial community structure during May (spring), July (summer), and September. (3) At the phylum level, no significant difference was found in the bacterial genera between CK and SS soil for three seasons; however, at the genus level, there were about 19 different bacterial genera. The correlation studies between 19 different bacterial genera and environmental factors and α-diversity indicated that bacterial genera of non-infected and infected Pinus sylvestris var. mongolica were distributed differently. The bacterial genera with CK were positively correlated with soil physicochemical properties, while a negative correlation was found for SS. In conclusion, the differences in nutrient and microbial community structure in the rhizosphere soil of Pinus sylvestris var. mongolica are the main causes of shoot blight disease.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


2003 ◽  
Vol 18 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Reza Yazdani ◽  
Jan-erik Nilsson ◽  
Christophe Plomion ◽  
Gaurov Mathur

1994 ◽  
Vol 92 (3) ◽  
pp. 443-450 ◽  
Author(s):  
Steffen Streller ◽  
Stanislaw Karpinski ◽  
Jan-Erik Hallgren ◽  
Gunnar Wingsle

1966 ◽  
Vol 16 (03/04) ◽  
pp. 526-540 ◽  
Author(s):  
E. A Beck ◽  
D. P Jackson

SummaryThe effects of trypsin and plasmin on the functional and physicochemical properties of purified human fibrinogen were observed at various stages of proteolysis. Concentrations of plasmin and trypsin that produced fibrinogenolysis at comparable rates as measured in a pH stat produced, at similar rates, loss of precipitability of fibrinogen by heat and ammonium sulphate and alterations in electrophoretic mobility on starch gel. Trypsin produced a more rapid loss of clottability of fibrinogen and a more rapid appearance of inhibitors of the thrombin-fibrinogen clotting system than did plasmin. Consistent differences were noted between the effects of trypsin and plasmin on the immunoelectrophoretic properties of fibrinogen during the early stages of proteolysis.These results are consistent with the hypothesis that trypsin initially reacts with the same peptide bonds of fibrinogen that are split by thrombin, but these same bonds do not appear to be split initially by plasmin. Measurement of the various functional and physico-chemical changes produced by the action of trypsin and plasmin on fibrinogen can be used to recognize various stages of proteolysis.


Sign in / Sign up

Export Citation Format

Share Document