Preparation and characterisation of vanadium pentoxide supported rhodium catalyst

Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.

1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


2021 ◽  
Author(s):  
Narendran Rajendran ◽  
Ali A. Husain ◽  
Saad Makhseed

Three new carbazole containing cross-linked polymers namely AH-Poly, TM-PDA-Poly and TMB-PDA-Poly were designed and successfully synthesized by an oxidative polymerization protocol. The prepared AH-Poly showed a specific BET surface area...


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 609
Author(s):  
Majeda Khraisheh ◽  
Fares AlMomani ◽  
Gavin Walker

Propylene is one of the world’s most important basic olefin raw material used in the production of a vast array of polymers and other chemicals. The need for high purity grade of propylene is essential and traditionally achieved by the very energy-intensive cryogenic separation. In this study, a pillared inorganic anion SIF62− was used as a highly selective C3H4 due to the square grid pyrazine-based structure. Single gas adsorption revealed a very high C3H4 uptake value (3.32, 3.12, 2.97 and 2.43 mmol·g−1 at 300, 320, 340 and 360 K, respectively). The values for propylene for the same temperatures were 2.73, 2.64, 2.31 and 1.84 mmol·g−1, respectively. Experimental results were obtained for the two gases fitted using Langmuir and Toth models. The former had a varied degree of representation of the system with a better presentation of the adsorption of the propylene compared to the propyne system. The Toth model regression offered a better fit of the experimental data over the entire range of pressures. The representation and fitting of the models are important to estimate the energy in the form of the isosteric heats of adsorption (Qst), which were found to be 45 and 30 kJ·Kmol−1 for propyne and propylene, respectively. A Higher Qst value reveals strong interactions between the solid and the gas. The dynamic breakthrough for binary mixtures of C3H4/C3H6 (30:70 v/v)) were established. Heavier propylene molecules were eluted first from the column compared to the lighter propyne. Vacuum swing adsorption was best suited for the application of strongly bound materials in adsorbents. A six-step cycle was used for the recovery of high purity C3H4 and C3H6. The VSA system was tested with respect to changing blowdown time and purge time as well as energy requirements. It was found that the increase in purge time had an appositive effect on C3H6 recovery but reduced productivity and recovery. Accordingly, under the experimental conditions used in this study for VSA, the purge time of 600 s was considered a suitable trade-off time for purging. Recovery up to 99%, purity of 98.5% were achieved at a purge time of 600 s. Maximum achieved purity and recovery were 97.4% and 98.5% at 100 s blowdown time. Energy and power consumption varied between 63–70 kWh/ton at the range of purge and blowdown time used. The VSA offers a trade-off and cost-effective technology for the recovery and separation of olefins and paraffin at low pressure and high purity.


2010 ◽  
Vol 660-661 ◽  
pp. 983-988 ◽  
Author(s):  
Alexander Rodrigo Arakaki ◽  
Walter Kenji Yoshito ◽  
Valter Ussui ◽  
Dolores Ribeiro Ricci Lazar

Zirconia stabilized with 8.5 mol% yttria (YSZ) were synthesized by coprecipitation and resulting gels were hydrothermallly treated at 200°C and 220 PSI for 4, 8 and 16 hours. Products were oven dried at 70°C for 24 hours, isostatically pressed as pellets and sintered at 1500 °C for 1 hour. Powders were characterized for surface area with N2 gas adsorption, X-ray diffraction, laser diffraction granulometric analysis and scanning and transmission electronic microscopy. Density of ceramics was measured by an immersion method based on the Archimedes principle. Results showed that powders dried at 70°C are amorphous and after treatment has tetragonal/cubic symmetry. Surface area of powders presented a significant reduction after hydrothermal treatment. Ceramics prepared from hydrothermally treated powders have higher green density but sintered pellets are less dense when compared to that made with powders calcined at 800°C for 1 hour due to the agglomerate state of powders. Solvothermal treatment is a promising procedure to enhance density.


2010 ◽  
Vol 660-661 ◽  
pp. 959-964
Author(s):  
Alexander Rodrigo Arakaki ◽  
Walter Kenji Yoshito ◽  
Valter Ussui ◽  
Dolores Ribeiro Ricci Lazar

One of the main applications of ceria-based (CeO2) ceramics is the manufacturing of Intermediate Temperature Solid Oxide Fuel Cells electrolytes. In order to improve ionic conductivity and densification of these materials various powder synthesis routes have been studied. In this work powders with composition Ce0.8(SmGd)0.2O1.9 have been synthesized by coprecipitation and hydrothermal treatment. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as precursor materials. The powders were characterized by X-ray diffraction, scanning and transmission electron microscopy, agglomerate size distribution by laser scattering and specific surface area by gas adsorption. Ceramic sinterability was evaluated by dilatometry and density measurements by Archimedes method. High specific surface area powders (~100m2/g) and cubic fluorite structure were obtained after hydrothermal treatment around 200°C. Ceramic densification was improved when compared to the one prepared from powders calcined at 800°C.


Clay Minerals ◽  
2013 ◽  
Vol 48 (2) ◽  
pp. 343-361 ◽  
Author(s):  
M. Valter ◽  
M. Plötze

AbstractBentonite is a potential material for use in the engineered barrier of radioactive waste repositories because of its low hydraulic permeability, self-sealing capability and retention capacity. It is expected that bentonite would react at the elevated temperatures accompanying the radioactive decay in the nuclear waste. The presented study was started in order to improve understanding of the coupled influence of temperature and (pore) water on the physicochemical and mineralogical properties of bentonite during thermal treatment under near-field relevant conditions. Granular Na-bentonite MX-80 was differently saturated (Sr = 1–0.05) and stored at different temperatures (50–150°C) in a closed system. Upon dismantling after different periods of time (3 to 18 months), mineralogical characteristics, cation exchange capacity and content of leachable cations, as well as physicochemical properties such as surface area and water adsorption were investigated.The results showed a high mineralogical stability. A slight conversion from the sodium to an earth alkali form of the bentonite was observed. However, considerable changes in the physicochemical properties of the bentonite were observed, particularly by treatment above the critical temperature of 120°C. The cation exchange capacity decreased during heating at 150°C by approximately. 10%. The specific surface area dropped by more than 50%. The water uptake capacity under free swelling conditions showed a slight tendency to lower values especially for samples heated for more than 12 months. The water vapour adsorption ability in contrast drops by 25% already within three months at T = 120°C. These changes are mostly related to the variations in the interlayer cation composition and to smectite aggregation processes. The observed alterations are rather subtle. However, temperatures ⩾ 120°C had a remarkable negative influence on different properties of MX-80.


Sign in / Sign up

Export Citation Format

Share Document