Chemical Differences Between the Wood Extracts of Jack Pine (Pinus Banksiana), Black Spruce (Picea Mariana) and Balsam Fir (Abies Balsamea) from Eastern Canada

1998 ◽  
Vol 18 (4) ◽  
pp. 427-438 ◽  
Author(s):  
André Pichette ◽  
Francois-Xavier Garneau ◽  
France-Ida Jean ◽  
Bernard Riedl ◽  
Michel Girard
2004 ◽  
Vol 34 (9) ◽  
pp. 1938-1945 ◽  
Author(s):  
Isobel Waters ◽  
Steven W Kembel ◽  
Jean-François Gingras ◽  
Jennifer M Shay

This study compares the effects of full-tree versus cut-to-length forest harvesting methods on tree regeneration in jack pine (Pinus banksiana Lamb.), mixedwood (Picea glauca (Moench) Voss – Populus tremuloides Michx. – Abies balsamea (L.) Mill.), and black spruce (Picea mariana (Mill.) BSP) sites in southeastern Manitoba, Canada. We surveyed tree regeneration densities, disturbance characteristics, and understorey vegetation in replicated control and harvested plots in each site type preharvest (1993) and 1 and 3 years postharvest (1994, 1996). In jack pine sites, the full-tree harvest method promoted regeneration of Pinus banksiana through increased disturbance of soil and the moss layer, and decreased slash deposition relative to the cut-to-length method. Conversely, in mixedwood sites the cut-to-length method resulted in less damage to advance regeneration and proved better at promoting postharvest regeneration of Abies balsamea and Picea glauca relative to the full-tree method. In black spruce sites, there were few differences in the impact of the two harvesting methods on regeneration of Picea mariana, which increased in frequency and density after both types of harvesting.


2001 ◽  
Vol 31 (12) ◽  
pp. 2160-2172 ◽  
Author(s):  
Martin Simard ◽  
Serge Payette

Black spruce (Picea mariana (Mill.) BSP) is the dominant tree species of the southernmost (48°N) lichen woodlands in eastern Canada. Most spruce trees in mature lichen woodlands appear to be declining, as shown by the massive invasion of the epiphytic lichen Bryoria on dead branches of dying trees. A dendroecological study was undertaken to identify the main causal factors of the decline. A decline index based on the abundance of Bryoria on spruce trees was used to distinguish healthy from damaged lichen–spruce woodlands and to select sampling sites for tree-ring measurements. Three conifer species (black spruce, balsam fir (Abies balsamea (L.) Mill.), and jack pine (Pinus banksiana Lamb.)) were sampled to compare their growth patterns in time and space. In the late 1970s and mid-1980s, black spruce and balsam fir experienced sharp and synchronous radial-growth reductions, a high frequency of incomplete and missing rings, and mass mortality likely caused by spruce budworm (Choristoneura fumiferana (Clem.)) defoliation. Jack pine, a non-host species, showed no such trend. Because black spruce layers were spared, lichen woodlands will eventually regenerate unless fire occurs in the following years. Black spruce decline can thus be considered as a normal stage in the natural dynamics of the southern lichen woodlands.


2005 ◽  
Vol 81 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Daniel Mailly ◽  
Mélanie Gaudreault

The objective of this study was to develop variable growth intercept models for coniferous species of major importance in Quebec using Nigh's (1997a) modelling technique. Eighty-three, 68, and 70 stem analysis plots of black spruce (Picea mariana [Mill.] BSP), jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill) were used, respectively. The growth intercept models for black spruce were the most precise, followed by those for jack pine and finally by those for balsam fir, based on the root mean square errors. Results indicated that the accuracy of the models was good, relative to those previously published for other species in Canada. Interim testing of the models revealed a low mean error for all three species that may not be of practical significance for site index determination, although more data should be obtained to further test the models. Key words: balsam fir, black spruce, growth intercept, jack pine, model, nonlinear regression, site index


2005 ◽  
Vol 81 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Daniel Mailly ◽  
Mélanie Gaudreault

The objective of this study was to develop variable growth intercept models for coniferous species of major importance in Quebec using Nigh's (1997a) modelling technique. Eighty-three, 68 and 70 stem analysis plots of black spruce (Picea mariana [Mill.] BSP), jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill) were used, respectively. The growth intercept models for black spruce were the most precise, followed by those for jack pine and finally by those for balsam fir, based on the root mean square errors. Results indicated that the accuracy of the models was good, relative to those previously published for other species in Canada. Interim testing of the models revealed a low mean error for all three species that may not be of practical significance for site index determination, although more data should be obtained to further test the models. Key words: balsam fir, black spruce, growth intercept, jack pine, model, nonlinear regression, site index


2010 ◽  
Vol 40 (4) ◽  
pp. 822-826 ◽  
Author(s):  
Kevin J. Kemball ◽  
A. Richard Westwood ◽  
G. Geoff Wang

Mineral soils exposed by fire are often covered by a layer of ash due to complete consumption of the forest floor (litter and duff). To assess the possible effects of ash on seed germination and viability of jack pine ( Pinus banksiana Lamb.), black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.), white spruce ( Picea glauca (Moench) Voss), and balsam fir ( Abies balsamea (L.) Mill.), a laboratory experiment was conducted using ash derived from three types of forest floor samples. The samples represented areas of high conifer concentration, high aspen concentration, and mixed aspen and conifer and were collected from five mature aspen ( Populus tremuloides Michx.) – conifer mixedwood stands in southeastern Manitoba. Ash derived from each forest floor type neither prohibited nor delayed conifer germination, except that of balsam fir. Balsam fir had significantly less germination on ash derived from forest floor samples with high aspen concentration. When corrected for seed viability, balsam fir had significantly less germination on all three ash types compared with jack pine, black spruce, and white spruce. However, the impact of ash on balsam fir is unlikely to have meaningful ecological implications, as balsam fir is a climax species and will establish in undisturbed mature forests.


1998 ◽  
Vol 78 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Helmut Krause

The purpose of this study was to determine whether change of forest cover had an effect on the development of the organic surface horizons, particularly on those variables that influence nutrient cycling and forest productivity. Jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) plantations were selected from among the youngest to oldest (2–16 yr) within a 100 km2 area in southeastern New Brunswick. Natural forests were also included as benchmark sites. The forest floor and tree foliage was sampled and trees measured on 0.05-ha plots. The forest floor samples were used to determine organic mass, nutrient contents and pH. In pine plantations, organic matter accumulated rapidly during the period of exponential tree growth, but leveled off at about 45 Mg ha–1. This was within the range of benchmark sites with mixed conifer-hardwood cover. In spruce plantations, the forest floor mass ranged upward to 77 Mg ha–1. Development was strongly influenced by the nature of the previous forest. Spruce forest floors were on average more acid and had lower nutrient concentrations, particularly N and Ca. The observed differences suggest that nutrients are recycled more rapidly in the pine plantations, partly explaining the superior growth of the latter. Key words: Forest floor, Kalmia angustifolia L., Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., nutrient cycling, plantation forest


2009 ◽  
Vol 85 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Xiangdong Lei ◽  
Changhui Peng ◽  
Haiyan Wang ◽  
Xiaolu Zhou

Historically, height–diameter models have mainly been developed for mature trees; consequently, few height–diameter models have been calibrated for young forest stands. In order to develop equations predicting the height of trees with small diameters, 46 individual height–diameter models were fitted and tested in young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations between the ages of 4 to 8 years, measured from 182 plots in New Brunswick, Canada. The models were divided into 2 groups: a diameter group and a second group applying both diameter and additional stand- or tree-level variables (composite models). There was little difference in predicting tree height among the former models (Group I) while the latter models (Group II) generally provided better prediction. Based on goodness of fit (R2and MSE), prediction ability (the bias and its associated prediction and tolerance intervals in absolute and relative terms), and ease of application, 2 Group II models were recommended for predicting individual tree heights within young black spruce and jack pine forest stands. Mean stand height was required for application of these models. The resultant tolerance intervals indicated that most errors (95%) associated with height predictions would be within the following limits (a 95% confidence level): [-0.54 m, 0.54 m] or [-14.7%, 15.9%] for black spruce and [-0.77 m, 0.77 m] or [-17.1%, 18.6%] for jack pine. The recommended models are statistically reliable for growth and yield applications, regeneration assessment and management planning. Key words: composite model, linear model, model calibration, model validation, prediction interval, tolerance interval


1964 ◽  
Vol 40 (4) ◽  
pp. 474-481 ◽  
Author(s):  
P. E. Vezina

The concept of stand density in relation to thinning is examined and its development over the years is discussed. Present difficulties of objectively measuring stand density are recognized and probable future trends towards the development of better formulae to express stand density are outlined. Researchers should continue to collect information on interrelationships among stand variables. Certain merits accrue from description of stand density in terms of variables, such as crown closure, that can be measured with some precision from aerial photographs. Conversely, valid estimates of crown closure which are often difficult to obtain by means of devices from the ground, could be predicted from stand density. Three stand variables, used as expressions of stand density, were tested in crown closure simple regressions in even-aged, unmanaged stands of balsam fir (Abies balsamea (L.) Mill.) and jack pine (Pinus banksiana Lamb.). These are: total number of trees, number of trees 4 inches and up, and basal area per acre. The strongest relationship found was the one where crown closure is compared with basal area; it was stronger for jack pine than for balsam fir. This was explained by differences in tolerance among the two species. The significance of these relationships for the stand development, and the feasibility of using height-and diameter-based indices as measures of growing stock in studies of yield are discussed.


Sign in / Sign up

Export Citation Format

Share Document