scholarly journals Droplet and Particle Methods to Investigate Turbulent Particle Laden Jets

Author(s):  
Eric Thacher ◽  
Tvetene Carlson ◽  
Jake Castellini ◽  
Michael D. Sohn ◽  
Evan Variano ◽  
...  
2005 ◽  
Author(s):  
Billy Amzal ◽  
Yonathan Ebguy ◽  
Sebastien Roland

Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.


2000 ◽  
Vol 25 (2-3) ◽  
pp. 99-101 ◽  
Author(s):  
Not Available Not Available

Author(s):  
Kailun Guo ◽  
Ronghua Chen ◽  
Suizheng Qiu ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
...  

Multiphase flow widely exists in the nature and engineering. The two-phase flow is the highlight of the studies about the flow in the vessel and steam explosion in nuclear severe accidents. The Moving Particle Semi-implicit (MPS) method is a fully-Lagrangian particle method without grid mesh which focuses on tracking the single particle and concerns with its movement. It has advantages in tracking complex multiphase flows compared with gird methods, and thus shows great potential in predicting multiphase flows. The objective of this thesis is to develop a general multiphase particle method based on the original MPS method and thus this work is of great significance for improving the numerical method for simulating the instability in reactor severe accident and two-phase flows in vessel. This research is intended to provide a study of the instability based on the MPS method. Latest achievements of mesh-free particle methods in instability are researched and a new multiphase MPS method, which is based on the original one, for simulating instability has been developed and validated. Based on referring to other researchers’ papers, the Pressure Poisson Equation (PPE), the viscosity term, the free surface particle determination part and the surface tension model are optimized or added. The numerical simulation on stratification behavior of two immiscible flows is carried out and results are analyzed after data processing. It is proved that the improved MPS method is more accurate than the original method in analysis of multiphase flows. In this paper, the main purposes are simulating and discussing Rayleigh-Taylor (R-T) instability and Kelvin-Helmholtz (K-H) instability. R-T and K-H instability play an important role in the mixing process of many layered flows. R-T instability occurs when a lower density fluid is supported by another density higher fluid or higher density fluid is accelerated by lower density fluid, and the resulting small perturbation increases and eventually forms turbulence. K-H instability is a small disturbance for two different densities, such as waves, at the interface of the two-phase fluid after giving a fixed acceleration in the fluid. Turbulence generated by R-T instability and K-H instability has an important effect in applications such as astrophysics, geophysics, and nuclear science.


1997 ◽  
Vol 504 ◽  
Author(s):  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
S. M. Myers ◽  
M. T. Dugger ◽  
T. A. Friedmann ◽  
...  

ABSTRACTEnergetic particle methods have been used to synthesize two metastable layers with superior mechanical properties: amorphous Ni implanted with overlapping Ti and C, and amorphous diamond-like carbon (DLC) formed by vacuum-arc deposition or pulsed laser deposition. Elastic modulus, yield stress and hardness were reliably determined for both materials by fitting finiteelement simulations to the observed layer/substrate responses during nanoindentation. Both materials show exceptional properties, i.e., the yield stress of amorphous Ni(Ti,C) exceeds that of hardened steels and other metallic glasses, and the hardness of DLC (up to 88 GPa) approaches that of crystalline diamond (∼100 GPa). Tribological performance of the layers during unlubricated sliding contact appears favorable for treating Ni-based micro-electromechanical systems: stick-slip adhesion to Ni is eliminated, giving a low coefficient of friction (∼0.3–0.2) and greatly reduced wear. We discuss how energetic particle synthesis is critical to forming these phases and manipulating their properties for optimum performance.


Sign in / Sign up

Export Citation Format

Share Document