scholarly journals Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.

2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Shengguo Ge ◽  
Siti Nurulain Mohd Rum

The human body generates infrared radiation through the thermal movement of molecules. Based on this phenomenon, infrared images of the human body are often used for monitoring and tracking. Among them, key point location on infrared images of the human body is an important technology in medical infrared image processing. However, the fuzzy edges, poor detail resolution, and uneven brightness distribution of the infrared image of the human body cause great difficulties in positioning. Therefore, how to improve the positioning accuracy of key points in human infrared images has become the main research direction. In this study, a multi-scale convolution fusion deep residual network (Mscf-ResNet) model is proposed for human body infrared image positioning. This model is based on the traditional ResNet, changing the single-scale convolution to multi-scale and fusing the information of different receptive fields, so that the extracted features are more abundant and the degradation problem, caused by the excessively deep network, is avoided. The experiments show that our proposed method has higher key point positioning accuracy than other methods. At the same time, because the network structure of this paper is too deep, there are too many parameters and a large volume of calculations. Therefore, a more lightweight network model is the direction of future research.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Martin Sommerfeld ◽  
Silvio Schmalfuß

The efficiency of dry powder inhalers (DPIs) for drug delivery is still very low and is therefore the objective of intensive research. Thus, numerical calculations (computational fluid dynamics (CFD)) using the Euler/Lagrange approach without coupling are being performed in order to analyze flow structure and carrier particle motion within a typical inhaler device. These computations are being performed for a steady-state situation with a flow rate of 100 l/min. Essential for the detachment of the very fine drug powder (i.e., between 1 and 5 μm) from the carrier particles are the fluid stresses experienced by such particles (i.e., relative velocity, turbulence, and fluid shear) as well as wall collisions, which are both evaluated in the present study. Since the carrier particles are rather large (i.e., normally 50–100 μm), first the importance of different relevant fluid forces, especially transverse lift forces, is investigated. Moreover, the significance of the parameters in the particle–wall collision model is highlighted and a statistical analysis of particle–wall collisions in an inhaler is conducted. The improved understanding of particle motion in the normally very complex flows of inhalers will be the basis for optimizing inhaler design.


Author(s):  
Dhiraj Amrutkar ◽  
Gaurav Dongare ◽  
Sayog Sonune ◽  
Archana Y. Chaudhari

One of the most important discoveries and creative developments that is playing a vital role in the professional world today is blockchain technology. A blockchain is a distributed, digitized and consensus-based secure information storage mechanism. Blockchain technology moves in the direction of persistent revolution and change. In the last couple of years, the upsurge in blockchain technology has obliged scholars and specialists to scrutinize new ways to apply blockchain technology with a wide range of domains. The dramatic increase in blockchain technology has provided many new application opportunities, including e-voting application. The present article provides a systematic review of emerging blockchain-based e-voting systems. In this paper, we call attention to the open research matters in this fast-growing field, explaining them in some details. It was concluded that frameworks needed enhancements in order to be used in voting systems due to these reservations. KEYWORDS: blockchain, e-voting, cloud computing, ethereum; ballot


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Kai Yan ◽  
Dongxiao Zou ◽  
Guangjian Yan ◽  
Hongliang Fang ◽  
Marie Weiss ◽  
...  

The MODIS LAI/FPAR products have been widely used in various fields since their first public release in 2000. This review intends to summarize the history, development trends, scientific collaborations, disciplines involved, and research hotspots of these products. Its aim is to intrigue researchers and stimulate new research direction. Based on literature data from the Web of Science (WOS) and associated funding information, we conducted a bibliometric visualization review of the MODIS LAI/FPAR products from 1995 to 2020 using bibliometric and social network analysis (SNA) methods. We drew the following conclusions: (1) research based on the MODIS LAI/FPAR shows an upward trend with a multiyear average growth rate of 24.9% in the number of publications. (2) Researchers from China and the USA are the backbone of this research area, among which the Chinese Academy of Sciences (CAS) is the core research institution. (3) Research based on the MODIS LAI/FPAR covers a wide range of disciplines but mainly focus on environmental science and ecology. (4) Ecology, crop production estimation, algorithm improvement, and validation are the hotspots of these studies. (5) Broadening the research field, improving the algorithms, and overcoming existing difficulties in heterogeneous surface, scale effects, and complex terrains will be the trend of future research. Our work provides a clear view of the development of the MODIS LAI/FPAR products and valuable information for scholars to broaden their research fields.


Author(s):  
Rimma Padovano

"Cloud computing" refers to large-scale parallel and distributed systems, which are essentially collections of autonomous. As a result, the “cloud organization” is made up on a wide range of ideas and experiences collected since the first digital computer was used to solve algorithmically complicated problems. Due to the complexity of established parallel and distributed computing ontologies, it is necessary for developers to have a high level of expertise to get the most out of the consolidated computer resources. The directions for future research for parallel and distributed computing are critically presented in this research: technology and application and cross-cutting concerns.


Pharmaceutics ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Imco Sibum ◽  
Paul Hagedoorn ◽  
Markus P. G. Kluitman ◽  
Martijn Kloezen ◽  
Henderik W. Frijlink ◽  
...  

Tuberculosis is the leading cause of death from a single infectious pathogen worldwide. Lately, the targeted delivery of antibiotics to the lungs via inhalation has received increasing interest. In a previous article, we reported on the development of a spray-dried dry powder isoniazid formulation containing an L-leucine coating. It dispersed well but had poor physical stability. In this study, we aimed to improve the stability by improving the leucine coating. To this end, we optimized the spray-drying conditions, the excipient content, and the excipient itself. Using L-leucine, the tested excipient contents (up to 5%) did not result in a stable powder. Contrary to L-leucine, the stability attained with trileucine was satisfactory. Even when exposed to 75% relative humidity, the formulation was stable for at least three months. The optimal formulation contained 3% trileucine w/w. This formulation resulted in a maximum fine particle dose of 58.00 ± 2.56 mg when a nominal dose of 80 mg was dispersed from the Cyclops® dry powder inhaler. The improved moisture protection and dispersibility obtained with trileucine are explained by its amorphous nature and a higher surface enrichment during drying. Dispersion efficiency of the device decreases at higher nominal doses.


Sign in / Sign up

Export Citation Format

Share Document