Extraction of Aerosol-Size Distributions from Multispectral Light Extinction Data

1992 ◽  
Vol 17 (4) ◽  
pp. 303-325 ◽  
Author(s):  
G. Ramachandran ◽  
David Leith
1992 ◽  
Vol 23 (7) ◽  
pp. 749-757 ◽  
Author(s):  
Cai Xiao-Shu ◽  
Wang Nai-Ning ◽  
Wei Jing-Ming ◽  
Zheng Gang

2010 ◽  
Vol 10 (9) ◽  
pp. 4295-4317 ◽  
Author(s):  
D. Wurl ◽  
R. G. Grainger ◽  
A. J. McDonald ◽  
T. Deshler

Abstract. Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm−3 (A) and 0.05 μm3 cm−3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm−3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20–50% and 10–40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.


2013 ◽  
Vol 13 (2) ◽  
pp. 4601-4635 ◽  
Author(s):  
F. Arfeuille ◽  
B. P. Luo ◽  
P. Heckendorn ◽  
D. Weisenstein ◽  
J. X. Sheng ◽  
...  

Abstract. In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the stratospheric warming following the Pinatubo eruption derived from SAGE II extinction data including most recent improvements in the processing algorithm and a data filling procedure in the opacity-induced "gap" regions. From these data, which cover wavelengths of 1.024 micrometer and shorter, we derived aerosol size distributions which properly reproduce extinction coefficients at much longer wavelength. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this dataset in the global chemistry-climate model (CCM) SOCOL leads to exaggerated aerosol-induced stratospheric heating compared to observations, even partly larger than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption arises from deficiencies in the model radiation codes rather than an insufficient observational data basis. Conversely, our approach reduces the infrared absorption in the tropical tropopause region, in better agreement with the post-volcanic temperature record at these altitudes.


2017 ◽  
Vol 587-588 ◽  
pp. 240-247 ◽  
Author(s):  
Yunjie Xia ◽  
Jun Tao ◽  
Leiming Zhang ◽  
Renjian Zhang ◽  
Shuanglin Li ◽  
...  

2010 ◽  
Vol 10 (11) ◽  
pp. 5107-5119 ◽  
Author(s):  
H. Yu ◽  
C. Wu ◽  
D. Wu ◽  
J. Z. Yu

Abstract. Elemental carbon (EC) in size-segregated aerosol samples were determined at five urban, one suburban, and one rural locations in the Pearl River Delta region in South China during 2006–2008 period. The size modal characteristics of EC were different at the urban and suburban/rural locations. The urban EC had a dominant condensation mode with a mass median aerodynamic diameter (MMAD) in the 0.36–0.43 μm range and a slightly less abundant mode in the droplet mode size (MMAD: 0.8–1.1 μm), while the suburban/rural EC had a prominent mode in the droplet mode size (MMAD: 0.7–1.1 μm) and a minor condensation mode (MMAD: 0.22–0.33 μm). Calculations using Mie theory and the measured size distributions of EC, organic carbon, and major inorganic ions indicate that EC-containing particles contributed 76±20% of the observed light extinction at the urban sites. Among the EC-containing particles, EC mass alone contributed 21±11% of the observed light extinction while non-EC materials on the EC particles (i.e., organic matter, ammonium sulfate, and water) contributed 55±15%. At the suburban/rural locations, EC-containing particles contributed 37–48% of the measured light extinction, with EC mass contributing 4–10% and non-EC coating materials contributing the remaining light extinction. Our results suggest that EC-containing particles were important to the overall light extinction in the urban atmospheres due to their more abundant presence from vehicular emissions. The EC-containing particles in the suburban/rural locations had a reduced but still significant contribution to light extinction budget.


2009 ◽  
Vol 9 (5) ◽  
pp. 23021-23050
Author(s):  
H. Yu ◽  
C. Wu ◽  
D. Wu ◽  
J. Z. Yu

Abstract. Elemental carbon (EC) in size-segregated aerosol samples were determined at five urban, one suburban, and one rural locations in the Pearl River Delta region in South China during 2006–2008 period. The size modal characteristics of EC were different at the urban and suburban/rural locations. The urban EC had a dominant condensation mode with a mass median aerodynamic diameter (MMAD) in the 0.36–0.43 μm range and a slightly less abundant mode in the droplet mode size (MMAD: 0.8–1.1 μm), while the suburban/rural EC had a prominent mode in the droplet mode size (MMAD: 0.7–1.1 μm) and a minor condensation mode (MMAD: 0.22–0.33 μm). Calculations using Mie theory and the measured size distributions of EC, organic carbon, and major inorganic ions indicate that EC-containing particles contributed 76% of the observed light extinction at the urban sites. Among the EC-containing particles, EC mass alone contributed 21% of the observed light extinction while non-EC materials on the EC particles (i.e. organic matter, ammonia sulfate, and water) contributed 55%. At the suburban/rural locations, EC-containing particles contributed 37–41% of the measured light extinction, with EC mass contributing 4–8% and non-EC coating materials contributing the remaining light extinction. Our results suggest that EC-containing particles were important to the overall light extinction in the urban atmospheres due to their more abundant presence from vehicular emissions. The EC-containing particles in the suburban/rural locations made a reduced but still significant contribution to light extinction budget.


Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.


Sign in / Sign up

Export Citation Format

Share Document