mode size
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 22)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rami A. Wahsheh

Hybrid integration of dielectric and plasmonic waveguides is necessary to reduce the propagation losses due to the metallic interactions and support of nanofabrication of plasmonic devices that deal with large data transfer. In this paper, we propose a direct yet efficient, very short air-slot coupler (ASC) of a length of 36 nm to increase the coupling efficiency between a silicon waveguide and a silver-air-silver plasmonic waveguide. Our numerical simulation results show that having the ASC at the interface makes the fabrication process much easier and ensures that light couples from a dielectric waveguide into and out of a plasmonic waveguide. The proposed coupler works over a broad frequency range achieving a coupling efficiency of 86% from a dielectric waveguide into a metal-dielectric-metal (MDM) plasmonic waveguide and 68% from a dielectric waveguide to an MDM plasmonic waveguide and back into another dielectric waveguide. In addition, we show that even if there are no high-precision fabrication techniques, light couples from a conventional dielectric waveguide (CDW) into an MDM plasmonic waveguide as long as there is an overlap between the CDW and ASC, which reduces the fabrication process tremendously. Our proposed coupler has an impact on the miniaturization of ultracompact nanoplasmonic devices.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4107
Author(s):  
Emmanuel Richaud ◽  
Muriel Ferry ◽  
Floriane Carpentier ◽  
Sophie Rouif ◽  
Laurent Cortella ◽  
...  

In the context of the SARS-CoV2 pandemic and because of the surgical and FFP2 mask (equivalent to the American N95 masks) shortages, studies on efficient sterilization protocols were initiated. As sterilization using irradiation is commonly used in the medical field, this method was among those that were evaluated. In this work, we tested irradiation under vacuum and under air (under both γ-rays and e-beams), but also, for acceptance purposes, undertook washing prior to the e-beam irradiation sterilization process. This article deals with the modifications induced by the sterilization processes at the molecular and the macromolecular scales on an FFP2 mask. Fourier transform infrared spectroscopy in attenuated total reflectance mode, size-exclusion chromatography and thermal-desorption–gas chromatography–mass spectrometry were used to characterize possible damage to the materials. It appeared that the modifications induced by the different sterilization processes under vacuum were relatively tenuous and became more significant when irradiation was performed using γ-rays under air.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3030
Author(s):  
Marco Saldutti ◽  
Meng Xiong ◽  
Evangelos Dimopoulos ◽  
Yi Yu ◽  
Mariangela Gioannini ◽  
...  

Photonic crystal cavities enable strong light–matter interactions, with numerous applications, such as ultra-small and energy-efficient semiconductor lasers, enhanced nonlinearities and single-photon sources. This paper reviews the properties of the modes of photonic crystal cavities, with a special focus on line-defect cavities. In particular, it is shown how the fundamental resonant mode in line-defect cavities gradually turns from Fabry–Perot-like to distributed-feedback-like with increasing cavity size. This peculiar behavior is directly traced back to the properties of the guided Bloch modes. Photonic crystal cavities based on Fano interference are also covered. This type of cavity is realized through coupling of a line-defect waveguide with an adjacent nanocavity, with applications to Fano lasers and optical switches. Finally, emerging cavities for extreme dielectric confinement are covered. These cavities promise extremely strong light–matter interactions by realizing deep sub-wavelength mode size while keeping a high quality factor.


2021 ◽  
Vol 29 (21) ◽  
pp. 33728
Author(s):  
Lirong Cheng ◽  
Simei Mao ◽  
Zhenmin Chen ◽  
Yinghui Wang ◽  
Caiyue Zhao ◽  
...  
Keyword(s):  

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Siwei Sun ◽  
Ying Chen ◽  
Yu Sun ◽  
Fengman Liu ◽  
Liqiang Cao

Fiber-to-chip optical interconnects is a big challenge in silicon photonics application scenarios such as data centers and optical transmission systems. An edge coupler, compared to optical grating, is appealing to in the application of silicon photonics due to the high coupling efficiency between standard optical fibers (SMF-28) and the sub-micron silicon wire waveguides. In this work, we proposed a novel fiber–chip edge coupler approach with a large mode size for silicon photonic wire waveguides. The edge coupler consists of a multiple structure which was fulfilled by multiple silicon nitride layers embedded in SiO2 upper cladding, curved waveguides and two adiabatic spot size converter (SSC) sections. The multiple structure can allow light directly coupling from large mode size fiber-to-chip coupler, and then the curved waveguides and SSCs transmit the evanescent field to a 220 nm-thick silicon wire waveguide based on the silicon-on-insulator (SOI) platform. The edge coupler, designed for a standard SMF-28 fiber with 8.2 μm mode field diameter (MFD) at a wavelength of 1550 nm, exhibits a mode overlap efficiency exceeding 95% at the chip facet and the overall coupling exceeding 90%. The proposed edge coupler is fully compatible with standard microfabrication processes.


2021 ◽  
Vol 2021 (1) ◽  
pp. 10-22
Author(s):  
N.A. Shidlovska ◽  
◽  
S.M. Zakharchenko ◽  
A.O. Perekos ◽  
◽  
...  

The conditions and technique for obtaining single-mode size distributions of spark-erosive aluminum particles are given. The statistical parameters of the size distributions of spark-erosive aluminum particles and caverns on the surface of its granules, obtained at a submilisecond duration of discharge pulses were calculated. A comparative analysis of the volumes of metal of erosion caverns and particles is carried out. The agreement of the diameter distributions of spark-erosive particles and caverns obtained in practice with the following theoretical distributions of a continuous random variable: Gauss, Weibull, the integral of the Rosin-Rammler function, and also log-normal distribution is verified. In this case, the parameters of theoretical distributions were calculated both by the statistical parameters of the distributions obtained in practice, and by the criterion of the smallest value of the average module of the relative deviation of the theoretical and practical distributions. It has been shown that for the values of the parameters of theoretical distributions that correspond to the statistical parameters of practical distributions, the distribution of erosive particles by diameters is in the best agreement with the Gauss distribution, and the caverns – with the distribution of integral of the Rosin-Rammler function. References 27, figures 2, tables 3.


ACS Photonics ◽  
2020 ◽  
Author(s):  
Yong Zhang ◽  
Yu He ◽  
Hongwei Wang ◽  
Lu Sun ◽  
Yikai Su
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document