Genetic Parameter Estimates of Growth and Survival of Pinus sylvestris with Mixed Model Multiple-trait Restricted Maximum Likelihood Analysis

2002 ◽  
Vol 17 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Thúy Olsson ◽  
Tore Ericsson
1998 ◽  
Vol 49 (4) ◽  
pp. 607 ◽  
Author(s):  
S. J. Schoeman ◽  
G. G. Jordaan

Postweaning liveweight gain records of 1610 young bulls obtained both in feedlot and under pasture were used to estimate (co)variance components using a multivariate restricted maximum likelihood analysis. The pedigree file included 3477 animals. Heritability estimates for liveweights and gain in both environments correspond to most previously reported estimates. The genetic correlation of gain between the 2 environments was -0·12, suggesting a large genotype testing environment interaction and re-ranking of animal breeding values across environments. Results of this analysis suggest the need for environment-specific breeding values for postweaning gain.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 885-894 ◽  
Author(s):  
John M Henshall ◽  
Michael E Goddard

Abstract Experiments to map QTL usually measure several traits, and not uncommonly genotype only those animals that are extreme for some trait(s). Analysis of selectively genotyped, multiple-trait data presents special problems, and most simple methods lead to biased estimates of the QTL effects. The use of logistic regression to estimate QTL effects is described, where the genotype is treated as the dependent variable and the phenotype as the independent variable. In this way selection on phenotype does not bias the results. If normally distributed errors are assumed, the logistic-regression analysis is almost equivalent to a maximum-likelihood analysis, but can be carried out with standard statistical packages. Analysis of a simulated half-sib experiment shows that logistic regression can estimate the effect and position of a QTL without bias and confirms the increased power achieved by multiple-trait analysis.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1819-1829 ◽  
Author(s):  
G Thaller ◽  
L Dempfle ◽  
I Hoeschele

Abstract Maximum likelihood methodology was applied to determine the mode of inheritance of rare binary traits with data structures typical for swine populations. The genetic models considered included a monogenic, a digenic, a polygenic, and three mixed polygenic and major gene models. The main emphasis was on the detection of major genes acting on a polygenic background. Deterministic algorithms were employed to integrate and maximize likelihoods. A simulation study was conducted to evaluate model selection and parameter estimation. Three designs were simulated that differed in the number of sires/number of dams within sires (10/10, 30/30, 100/30). Major gene effects of at least one SD of the liability were detected with satisfactory power under the mixed model of inheritance, except for the smallest design. Parameter estimates were empirically unbiased with acceptable standard errors, except for the smallest design, and allowed to distinguish clearly between the genetic models. Distributions of the likelihood ratio statistic were evaluated empirically, because asymptotic theory did not hold. For each simulation model, the Average Information Criterion was computed for all models of analysis. The model with the smallest value was chosen as the best model and was equal to the true model in almost every case studied.


Sign in / Sign up

Export Citation Format

Share Document