Neotectonics, sea-level changes and biological evolution in the Fennoscandian Border Zone of the southern Kattegat Sea

Boreas ◽  
2002 ◽  
Vol 31 (2) ◽  
pp. 133-150 ◽  
Author(s):  
Jørn Bo Jensen ◽  
Kaj Strand Petersen ◽  
Peter Konradi ◽  
Antoon Kuijpers ◽  
Ole Bennike ◽  
...  
Boreas ◽  
2008 ◽  
Vol 31 (2) ◽  
pp. 133-150 ◽  
Author(s):  
JØRN BO JENSEN ◽  
KAJ STRAND PETERSEN ◽  
PETER KONRADI ◽  
ANTOON KUIJPERS ◽  
OLE BENNIKE ◽  
...  

2003 ◽  
Vol 1 ◽  
pp. 459-526 ◽  
Author(s):  
Lars H. Nielsen

The continental to marine Upper Triassic – Jurassic succession of the Danish Basin and the Fennoscandian Border Zone is interpreted within a sequence stratigraphic framework, and the evolution of the depositional basin is discussed. The intracratonic Permian–Cenozoic Danish Basin was formed by Late Carboniferous – Early Permian crustal extension followed by subsidence governed primarily by thermal cooling and local faulting. The basin is separated from the stable Precambrian Baltic Shield by the Fennoscandian Border Zone, and is bounded by basement blocks of the Ringkøbing–Fyn High towards the south. In Late Triassic – Jurassic times, the basin was part of the epeiric shallow sea that covered most of northern Europe. The Upper Triassic – Jurassic basin-fill is subdivided into two tectono-stratigraphic units by a basinwide intra-Aalenian unconformity. The Norian – Lower Aalenian succession was formed under relative tectonic tranquillity and shows an overall layer-cake geometry, except for areas with local faults and salt movements. Deposition was initiated by a Norian transgression that led to shallow marine deposition and was accompanied by a gradual climatic change to more humid conditions. Extensive sheets of shoreface sand and associated paralic sediments were deposited during short-lived forced regressions in Rhaetian time. A stepwise deepening and development of fully marine conditions followed in the Hettangian – Early Sinemurian. Thick uniform basinwide mud blankets were deposited on an open storm-influenced shelf, while sand was trapped at the basin margins. This depositional pattern continued until Late Toarcian – Early Aalenian times when the basin became restricted due to renewed uplift of the Ringkøbing–Fyn High. In Middle Aalenian – Bathonian times, the former basin area was subjected to deep erosion, and deposition became restricted to the fault-bounded Sorgenfrei–Tornquist Zone. Eventually the fault margins were overstepped, and paralic–marine deposition gradually resumed in most of the basin in Late Jurassic time. Thus, the facies architecture of the Norian – Lower Aalenian succession reflects eustatic or large-scale regional sea-level changes, whereas the Middle Aalenian – Volgian succession reflects a strong tectonic control that gradually gave way to more widespread and sea-level controlled sedimentation. The uplift of the Ringkøbing–Fyn High and most of the Danish Basin occurred concurrently with the uplift of the North Sea and a wide irregular uplifted area was formed, which differs significantly from the postulated domal pattern.


The Holocene ◽  
2016 ◽  
Vol 27 (3) ◽  
pp. 418-426 ◽  
Author(s):  
Pasquale Raia ◽  
Luigi Ferranti ◽  
Silvia Castiglione ◽  
Marina Melchionna ◽  
Fiorella Saggese ◽  
...  

Rates of biological evolution on islands are often presumed to exceed rates on the mainland. We tested this postulation by computing the evolutionary rate of head shape in Italian wall lizard Podarcis siculus, occurring on four islands off the coast of Southern Italy. We calculated the evolutionary rate using a phylogenetic tree whose node ages were derived from Lambeck et al. predicted ages of geographic isolation of the islands. Such ages are based on a relative sea-level change model for the late Pleistocene–Holocene. Through a likelihood optimization procedure, our method allows computing, besides the evolutionary rate, biological estimates of the ages of insular populations, with this indirectly testing Lambeck et al.’s model estimates. We found that the rate of evolution in Podarcis head shapes on islands is not statistically different from the mainland rate, although insular lizards have distinctive head shapes. Overall, the insular phenotype took 1–4000 years to arise (differing among islands). The estimated ages of insular populations are lower than Lambeck et al.’s estimates and fall in the 5- to 6-ka interval.


2016 ◽  
Vol 155 (3) ◽  
pp. 641-673 ◽  
Author(s):  
ATHANAS CHATALOV

AbstractThe Early to Late Triassic development of a carbonate ramp system in the subtropical belt of the NW Tethys was controlled by the interplay of several global and regional factors: geotectonic setting (slow continuous subsidence on a passive continental margin), antecedent topography (low-gradient relief inherited from preceding depositional regime), climate and oceanography (warm and dry climatic conditions, storm influence), relative sea-level changes (Olenekian to Anisian eustatic rise, middle Anisian to early Carnian sea-level fall), lack of frame-builders (favouring the maintenance of ramp morphology), and carbonate production (abundant formation of lime mud, non-skeletal grains and marine cements, development of diverse biota controlled by biological evolution and environmental conditions). Elevated palaeorelief affected the ramp initialization on a local scale, while autogenic processes largely controlled the formation of peritidal cyclicity during the early stage of ramp retrogradation. Probably fault-driven differential subsidence caused a local distal steepening of the ramp profile in middle–late Anisian time. The generally favourable conditions promoted long-term maintenance of homoclinal ramp morphology and accumulation of carbonate sediments having great maximum thickness (~500 m). Shutdown of the carbonate factory and demise of the ramp system in the early Carnian resulted from relative sea-level fall and subsequent emergence. After a period of subaerial exposure with minor karstification, the deposition of continental quartz arenites suggests the possible effect of the Carnian Pluvial Episode.


10.1029/ft354 ◽  
1989 ◽  
Author(s):  
John M. Dennison ◽  
Edwin J. Anderson ◽  
Jack D. Beuthin ◽  
Edward Cotter ◽  
Richard J. Diecchio ◽  
...  

Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


Sign in / Sign up

Export Citation Format

Share Document