evolutionary rate
Recently Published Documents


TOTAL DOCUMENTS

418
(FIVE YEARS 117)

H-INDEX

48
(FIVE YEARS 8)

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Ning Liu ◽  
Lijun Fang ◽  
Yalin Zhang

The complete mitogenomes of four species, Neptis thisbe, Neptis obscurior, Athyma zeroca, and Aldania raddei, were sequenced with sizes ranging from 15,172 bp (N. obscurior) to 16,348 bp (Al. raddei). All four mitogenomes display similar nucleotide content and codon usage of protein-coding genes (PCGs). Typical cloverleaf secondary structures are identified in 21 tRNA genes, while trnS1 (AGN) lacks the dihydrouridine (DHC) arm. The gene orientation and arrangement of the four mitogenomes are similar to that of other typical mitogenomes of Lepidoptera. The Ka/Ks ratio of 13 PCGs among 58 Limenitidinae species reveals that cox1 had the slowest evolutionary rate, while atp8 and nad6 exhibited a higher evolutionary rate. The phylogenetic analysis reveals that tribe-levels are well-supported monophyletic groups. Additionally, Maximum Likelihood analysis recovered the relationship (Parthenini + ((Chalingini + (Cymothoini + Neptini)) + (Adoliadini + Limenitidini))). However, a Bayesian analysis based on the same dataset recovered the relationship (Parthenini + (Adoliadini + ((Cymothoini + Neptini) + (Chalingini + Limenitidini)))). These results will offer valuable data for the future study of the phylogenetic relationships for Limenitidinae.


2021 ◽  
Author(s):  
Oliver Eales ◽  
Andrew Page ◽  
Leonardo de Oliveira Martins ◽  
Haowei Wang ◽  
Barbara Bodinier ◽  
...  

Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Here we present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. From 9 to 27 September 2021 (round 14) and 19 October to 5 November 2021 (round 15), all lineages sequenced within REACT-1 were Delta or a Delta sub-lineage with 44 unique lineages identified. The proportion of the original Delta variant (B.1.617.2) was found to be increasing between September and November 2021, which may reflect an increasing number of sub-lineages which have yet to be identified. The proportion of B.1.617.2 was greatest in London, which was further identified as a region with an increased level of genetic diversity. The Delta sub-lineage AY.4.2 was found to be robustly increasing in proportion, with a reproduction number 15% (8%, 23%) greater than its parent and most prevalent lineage, AY.4. Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Though no difference in the viral load based on cycle threshold (Ct) values was identified, a lower proportion of those infected with AY.4.2 had symptoms for which testing is usually recommend (loss or change of sense of taste, loss or change of sense of smell, new persistent cough, fever), compared to AY.4 (p = 0.026). The evolutionary rate of SARS-CoV-2, as measured by the mutation rate, was found to be slowing down during the study period, with AY.4.2 further found to have a reduced mutation rate relative to AY.4. As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2699
Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, and thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridization, both processes usually complicating systematic inferences. In this study, we generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity and repeat composition of these sequences. By comparing the whole-plastome sequences obtained, we confirmed the double inversion located in the long single-copy region, for most of the species analyzed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also showed that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae—as well as in the sister family Calyceraceae—lack the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, were overall consistent with the general consensus for the family’s phylogeny while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1282
Author(s):  
Artem N. Bondaryuk ◽  
Tatiana E. Peretolchina ◽  
Elena V. Romanova ◽  
Anzhelika V. Yudinceva ◽  
Evgeny I. Andaev ◽  
...  

In this paper, we revealed the genetic structure and migration history of the Powassan virus (POWV) reconstructed based on 25 complete genomes available in NCBI and ViPR databases (accessed in June 2021). The usage of this data set allowed us to perform a more precise assessment of the evolutionary rate of this virus. In addition, we proposed a simple Bayesian technique for the evaluation and visualization of ‘temporal signal dynamics’ along the phylogenetic tree. We showed that the evolutionary rate value of POWV is 3.3 × 10−5 nucleotide substitution per site per year (95% HPD, 2.0 × 10−5–4.7 × 10−5), which is lower than values reported in the previous studies. Divergence of the most recent common ancestor (MRCA) of POWV into two independent genetic lineages most likely occurred in the period between 2600 and 6030 years ago. We assume that the divergence of the virus lineages happened due to the melting of glaciers about 12,000 years ago, which led to the disappearance of the Bering Land Bridge between Eurasia and North America (the modern Alaskan territory) and spatial division of the viral areal into two parts. Genomic data provide evidence of the virus migrations between two continents. The mean migration rate detected from the Far East of Russia to North America was one event per 1750 years. The migration to the opposite direction occurred approximately once per 475 years.


2021 ◽  
Author(s):  
Darren J Parker ◽  
Kamil S Jaron ◽  
Zoé Dumas ◽  
Marc Robinson-Rechavi ◽  
Tanja Schwander

Sex chromosomes have evolved repeatedly across the tree of life. As they are present in different copy numbers in males and females, they are expected to experience different selection pressures than the autosomes, with consequences including a faster rate of evolution, increased accumulation of sexually antagonistic alleles, and the evolution of dosage compensation. Whether these consequences are general or linked to idiosyncrasies of specific taxa is not clear as relatively few taxa have been studied thus far. Here we use whole-genome sequencing to identify and characterize the evolution of the X chromosome in five species of Timema stick insects with XX:X0 sex determination. The X chromosome had a similar size (approximately 11% of the genome) and gene content across all five species, suggesting that the X chromosome originated prior to the diversification of the genus. Genes on the X showed evidence of a faster evolutionary rate than genes on the autosomes, likely due to less effective purifying selection. Genes on the X also showed almost complete dosage compensation in somatic tissues (heads and legs), but dosage compensation was absent in the reproductive tracts. Contrary to prediction, sex-biased genes showed little enrichment on the X, suggesting that the advantage X-linkage provides to the accumulation of sexually antagonistic alleles is weak. Overall, we found the consequences of X-linkage on gene sequences and expression to be similar across Timema species, showing the characteristics of the X chromosome are surprisingly consistent over 30 million years of evolution.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2350
Author(s):  
Saki Nagata ◽  
Ryoji Kiyohara ◽  
Hiroyuki Toh

The hepatitis delta virus is a single-stranded circular RNA virus, which is characterized by high self-complementarity. About 70% of the genome sequences can form base-pairs with internal nucleotides. There are many studies on the evolution of the hepatitis delta virus. However, the secondary structure has not been taken into account in these studies. In this study, we developed a method to examine the effect of base pairing as a constraint on the nucleotide substitutions during the evolution of the hepatitis delta virus. The method revealed that the base pairing can reduce the evolutionary rate in the non-coding region of the virus. In addition, it is suggested that the non-coding nucleotides without base pairing may be under some constraint, and that the intensity of the constraint is weaker than that by the base pairing but stronger than that on the synonymous site.


Author(s):  
Joan Pere Pascual-Díaz ◽  
Sònia Garcia ◽  
Daniel Vitales

Plastid genomes are in general highly conserved given their slow evolutionary rate, thus large changes in their structure are unusual. However, when specific rearrangements are present, they are often phylogenetically informative. Asteraceae is a highly diverse family whose evolution is long driven by polyploidy (up to 48x) and hybridisation, both processes usually complicating systematic inferences. In this study, we have generated one of the most comprehensive plastome-based phylogenies of family Asteraceae, providing information about the structure, genetic diversity, and repeat composition of these sequences. By comparing the whole plastome sequences obtained, we confirmed the double inversion located in the long single copy region, for most of the species analysed (with the exception of basal tribes), a well-known feature for Asteraceae plastomes. We also show that genome size, gene order and gene content are highly conserved along the family. However, species representative of the basal subfamily Barnadesioideae -as well as in the sister family Calyceraceae - are lacking the pseudogene rps19 located in one inverted repeat. The phylogenomic analysis conducted here, based on 63 protein-coding genes, 30 transfer RNA genes and 21 ribosomal RNA genes from 36 species of Asteraceae, are overall consistent with the general consensus for the family’s phylogeny, while resolving the position of tribe Senecioneae and revealing some incongruences at tribe level between reconstructions based on nuclear and plastid DNA data.


2021 ◽  
Author(s):  
Jose L. Oliver ◽  
Pedro Bernaola-Galvan ◽  
Francisco Perfectti ◽  
Cristina Gomez-Martin ◽  
Miguel Verdu ◽  
...  

In the brief time since the outbreak of the COVID 19 pandemic, and despite its proofreading mechanism, the SARS-CoV-2 coronavirus has accumulated a significant amount of genetic variability through recombination and mutation events. To test evolutionary trends that could inform us on the adaptive process of the virus to its human host, we summarize all this variability in the Sequence Compositional Complexity (SCC), a measure of genome heterogeneity that captures the mutational and recombinational changes accumulated by a nucleotide sequence along time. Despite the brief time elapsed, we detected many differences in the number and length of compositional domains, as well as in their nucleotide frequencies, in more than 12,000 high-quality coronavirus genomes from across the globe. These differences in SCC are phylogenetically structured, as revealed by significant phylogenetic signal. Phylogenetic ridge regression shows that SCC followed a generalized decreasing trend along the ongoing process of pathogen evolution. In contrast, SCC evolutionary rate increased with time, showing that it accelerates toward the present. In addition, a low rate set of genomes was detected in all the genome groups, suggesting the existence of a stepwise distribution of rates, a strong indication of selection in favor of different dominant strains. Coronavirus variants reveal an exacerbation of this trend: non-significant SCC regression, low phylogenetic signal and, concomitantly, a threefold increase in the evolutionary rate. Altogether, these results show an accelerated decline of genome heterogeneity along with the SARS CoV 2 pandemic expansion, a process that might be related to viral adaptation to the human host, perhaps paralleling the transformation of the current pandemic to epidemic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenhao Li ◽  
Faxiang Wang ◽  
Shouwen Jiang ◽  
Binbin Pan ◽  
Jiulin Chan ◽  
...  

Hadal trenches are commonly referred to as the deepest areas in the ocean and are characterized by extreme environmental conditions such as high hydrostatic pressures and very limited food supplies. Amphipods are considered the dominant scavengers in the hadal food web. Alicella gigantea is the largest hadal amphipod and, as such, has attracted a lot of attention. However, the adaptive evolution and gigantism mechanisms of the hadal “supergiant” remain unknown. In this study, the whole-body transcriptome analysis was conducted regarding the two hadal amphipods, one being the largest sized species A. gigantea from the New Britain Trench and another the small-sized species Bathycallisoma schellenbergi from the Marceau Trench. The size and weight measurement of the two hadal amphipods revealed that the growth of A. gigantea was comparatively much faster than that of B. schellenbergi. Phylogenetic analyses showed that A. gigantea and B. schellenbergi were clustered into a Lysianassoidea clade, and were distinct from the Gammaroidea consisting of shallow-water Gammarus species. Codon substitution analyses revealed that “response to starvation,” “glycerolipid metabolism,” and “meiosis” pathways were enriched among the positively selected genes (PSGs) of the two hadal amphipods, suggesting that hadal amphipods are subjected to intense food shortage and the pathways are the main adaptation strategies to survive in the hadal environment. To elucidate the mechanisms underlying the gigantism of A. gigantea, small-sized amphipods were used as the background for evolutionary analysis, we found the seven PSGs that were ultimately related to growth and proliferation. In addition, the evolutionary rate of the gene ontology (GO) term “growth regulation” was significantly higher in A. gigantea than in small-sized amphipods. By combining, those points might be the possible gigantism mechanisms of the hadal “supergiant” A. gigantea.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12159
Author(s):  
Austin A. Varela ◽  
Sammy Cheng ◽  
John H. Werren

Angiotensin-converting enzyme 2 (ACE2) is the cell receptor that the coronavirus SARS-CoV-2 binds to and uses to enter and infect human cells. COVID-19, the pandemic disease caused by the coronavirus, involves diverse pathologies beyond those of a respiratory disease, including micro-thrombosis (micro-clotting), cytokine storms, and inflammatory responses affecting many organ systems. Longer-term chronic illness can persist for many months, often well after the pathogen is no longer detected. A better understanding of the proteins that ACE2 interacts with can reveal information relevant to these disease manifestations and possible avenues for treatment. We have undertaken an approach to predict candidate ACE2 interacting proteins which uses evolutionary inference to identify a set of mammalian proteins that “coevolve” with ACE2. The approach, called evolutionary rate correlation (ERC), detects proteins that show highly correlated evolutionary rates during mammalian evolution. Such proteins are candidates for biological interactions with the ACE2 receptor. The approach has uncovered a number of key ACE2 protein interactions of potential relevance to COVID-19 pathologies. Some proteins have previously been reported to be associated with severe COVID-19, but are not currently known to interact with ACE2, while additional predicted novel ACE2 interactors are of potential relevance to the disease. Using reciprocal rankings of protein ERCs, we have identified strongly interconnected ACE2 associated protein networks relevant to COVID-19 pathologies. ACE2 has clear connections to coagulation pathway proteins, such as Coagulation Factor V and fibrinogen components FGA, FGB, and FGG, the latter possibly mediated through ACE2 connections to Clusterin (which clears misfolded extracellular proteins) and GPR141 (whose functions are relatively unknown). ACE2 also connects to proteins involved in cytokine signaling and immune response (e.g. XCR1, IFNAR2 and TLR8), and to Androgen Receptor (AR). The ERC prescreening approach has elucidated possible functions for relatively uncharacterized proteins and possible new functions for well-characterized ones. Suggestions are made for the validation of ERC-predicted ACE2 protein interactions. We propose that ACE2 has novel protein interactions that are disrupted during SARS-CoV-2 infection, contributing to the spectrum of COVID-19 pathologies.


Sign in / Sign up

Export Citation Format

Share Document