Trace metal and major ion concentrations in Lakes Hayes and Manapouri

1999 ◽  
Vol 29 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Malcolm R. Reid ◽  
Jonathan P. Kim ◽  
Keith A. Hunter
2008 ◽  
Vol 4 (1) ◽  
pp. 173-211
Author(s):  
E. Dietze ◽  
A. Kleber ◽  
M. Schwikowski

Abstract. El Niño-Southern Oscillation (ENSO) is an important element of earth's ocean-climate system. To further understand its past variability, proxy records from climate archives need to be studied. Ice cores from high alpine glaciers may contain high resolution ENSO proxy information, given the glacier site is climatologically sensitive to ENSO. We investigated signals of ENSO in the climate of the subtropical Andes in the proximity of Cerro Tapado glacier (30°08' S, 69°55' W, 5550 m a.s.l.), where a 36 m long ice core was drilled in 1999 (Ginot, 2001). We used annual and semi-annual precipitation and temperature time series from regional meteorological stations and interpolated grids for correlation analyses with ENSO indices and ice core-derived proxies (net accumulation, stable isotope ratio δ18O, major ion concentrations). The total time period investigated here comprises 1900 to 2000, but varies with data sets. Only in the western, i.e. Mediterranean Andes precipitation is higher (lower) during El Niño (La Niña) events, especially at higher altitudes, due to the latitudinal shift of frontal activity during austral winters. However, the temperature response to ENSO is more stable in space and time, being higher (lower) during El Niño (La Niña) events in most of the subtropical Andes all year long. From a northwest to southeast teleconnection gradient, we suggest a regional water vapour feedback triggers temperature anomalies as a function of ENSO-related changes in regional pressure systems, Pacific sea surface temperature and tropical moisture input. Tapado glacier ice proxies are found to be predominantly connected to eastern Andean summer rain climate, which contradicts previous studies and the modern mean spatial boundary between subtropical summer and winter rain climate derived from the grid data. The only ice core proxy showing a response to ENSO is the major ion concentrations, via local temperature indicating reduced sublimation and mineral dust input during El Niño years.


2016 ◽  
Vol 11 (2) ◽  
pp. 448-458 ◽  
Author(s):  
Linhua Sun ◽  
Song Chen ◽  
Herong Gui

Water source identification is important for water hazard controlling in coal mines. In this study, major ion concentrations of the groundwater collected from four representative aquifer systems in the Baishan coal mine, northern Anhui Province, China, have been analysed by a series of statistical methods. The results indicate that the major ion concentrations of the groundwater from different aquifer system are different with each other, and provided the possibility of water source identification based on hydrochemistry. Factor analysis indicates that these differences are controlled by different types of water rock interactions. The analysis based on US Environmental Protection Agency (EPA) Unmix model identified three sources (weathering of silicate minerals, dissolution of carbonate and evaporate minerals) responsible for the hydrochemical variations of the groundwater. Also, it shows that their contributions for the groundwater in different aquifer systems vary considerably. Based on these variations and on step by step analysis, the source aquifer system for the groundwater samples with unknown source has been determined and, similar to the result obtained by the cluster and discriminant analysis. Therefore, EPA Unmix model can be applied for water source identification in coal mine, as it can provide information about water rock interaction and water source identification simultaneously.


1997 ◽  
Vol 194-195 ◽  
pp. 285-302 ◽  
Author(s):  
Helen P. Jarvie ◽  
Colin Neal ◽  
David V. Leach ◽  
Geoffery P. Ryland ◽  
W.Alan House ◽  
...  

2012 ◽  
Vol 212-213 ◽  
pp. 362-365 ◽  
Author(s):  
Lin Hua Sun ◽  
He Rong Gui

Major ion concentrations of twenty groundwater samples from two deep seated aquifers (coal bearing-GC and limestone-LC) are analyzed for identify the differences between them and the source of ions. The results suggest that they are moderate to highly mineralized water with their average TDS values are 2444 (GC) and 1178 (LC) mg/L. LCs show lower Na but much higher Ca and Mg concentrations relative to GCs. Saturation indexes and principle component analysis, as well as mole ratios between Na and Cl, Ca and SO4, Ca and HCO3 indicate that they have multi sources with incorporation of halite and albite for Na, calcite, dolomite and gypsum for Ca, pyrite and gypsum for SO4.


Sign in / Sign up

Export Citation Format

Share Document