Study of particulate matters concentration and radiation rate in the atmosphere of Ilam city during middle east dust storms

Author(s):  
Ali Amarloei ◽  
Ahmad Jonaidi Jafari ◽  
Sajad Mazloomi
2020 ◽  
Vol 152 ◽  
pp. 104280 ◽  
Author(s):  
Ali Amarloei ◽  
Mehdi Fazlzadeh ◽  
Ahmad Jonidi Jafari ◽  
Ahmad Zarei ◽  
Sajad Mazloomi

2020 ◽  
Vol 223 ◽  
pp. 117187 ◽  
Author(s):  
Zahra Soleimani ◽  
Pari Teymouri ◽  
Ali Darvishi Boloorani ◽  
Alireza Mesdaghinia ◽  
Nick Middleton ◽  
...  

2019 ◽  
Vol 655 ◽  
pp. 434-445 ◽  
Author(s):  
Gholamreza Goudarzi ◽  
Mohammad Shirmardi ◽  
Abolfazl Naimabadi ◽  
Ata Ghadiri ◽  
Javad Sajedifar

2019 ◽  
Vol 99 ◽  
pp. 04006
Author(s):  
Khan Alam ◽  
Maqbool Ahmad

Dust storms deteriorated air quality over the Gulf Region, Iraq, Iran, and Pakistan during the last decade. The purpose of this study is to investigate the changes in aerosol optical and radiative properties during a dust episode over the various locations in the Middle East and Southwest Asia using data from the MODerate resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) during March, 2012. Maximum aerosol optical depth (AOD) values were found to be 2.18, 1.30, 4.33 and 1.80 over Lahore, Kanpur, Kaust, and Mezaira, respectively. The Volume Size Distributions, Single Scattering Albedo, Refractive Index, and Asymmetry parameter indicated that coarse mode aerosols were predominant relative to fine mode aerosols during the dust event. The average shortwave aerosol radiative forcing (ARF) values at the earth’s surface were found to be -96±45 W m-2, -86±22 W m-2, -77±51 W m-2, and -75±40 W m-2, over Lahore, Kanpur, Kaust and Mezaira, respectively. Likewise, the averaged ARF values over Lahore, Kanpur, Kaust and Mezaira at the top of the atmosphere (TOA) were found to be -45±25 W m-2, -27±9 W m-2, -41±29 W m-2, and -75±40 W m-2, respectively. The large differences between surface and TOA forcing produced significant heating within the atmosphere.


1986 ◽  
Vol 10 (2) ◽  
pp. 83-96 ◽  
Author(s):  
N.J. Middleton
Keyword(s):  

2020 ◽  
Author(s):  
Enza Di Tomaso ◽  
Sara Basart ◽  
Jeronimo Escribano ◽  
Paul Ginoux ◽  
Oriol Jorba ◽  
...  

<p>DustClim (Dust Storms Assessment for the development of user-oriented Climate Services in Northern Africa, Middle East and Europe) is a project of the European Research Area For Climate Services (ERA4CS). DustClim is aiming to provide reliable information on sand and dust storms for developing dust-related services for selected socio-economic sectors: air quality, aviation and solar energy.</p><p>This contribution will describe the work done within the DustClim project towards the production of a dust reanalysis over the domain of Northern Africa, the Middle East and Europe at an unprecedented high spatial resolution (at 10km x 10km) using the state-of-art Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) and its data assimilation capability (Di Tomaso et al., 2017). An ensemble-based Kalman filter (namely the local ensemble transform Kalman filter – LETKF) has been utilized to optimally combine model simulations and satellite retrievals.</p><p>Dust ensemble forecasts are used to estimate flow-dependent forecast uncertainty, which is used by the data assimilation scheme to optimally combine model prior information with satellite retrievals. Satellite observations from MODIS Deep Blue with specific observational constraint for dust (Ginoux et al., 2012; Pu and Ginoux, 2016; Sayer et al., 2014) are considered for assimilation over land surfaces, including source regions. MONARCH ensemble has been generated by applying multi-parameters, multi-physics, multi-meteorological initial and boundary conditions perturbations. Sensitive parameters of the assimilation configuration like the balance between observational and background uncertainty, or the spatial location of errors have been carefully calibrated.</p><p>The dust reanalysis for the period 2011-2016 is being compared against independent dust-filtered observations from AERONET (AErosol RObotic NETwork) show the benefit of the assimilation of dust-related MODIS Deep Blue products over areas not easily covered by other observational datasets. Particularly relevant is the improvement of the model skills over the Sahara.</p><p>References:<br>Di Tomaso, E., Schutgens, N. A. J., Jorba, O., and Pérez García-Pando, C. (2017): Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0, Geosci. Model Dev., 10, 1107-1129, doi:10.5194/gmd-10-1107-2017.<br>Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M. Global-Scale Attribution of Anthropogenic and Natural Dust Sources and Their Emission Rates Based on Modis Deep Blue Aerosol Products. Rev Geophys 50, doi:10.1029/2012rg000388 (2012).<br>Pu, B., and Ginoux, P. (2016). The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmospheric Chemistry and Physics, 16(21), 13431-13448.<br>Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong, M.-J.: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations, J. Geophys. Res.-Atmos., 119, 13965–13989, doi:10.1002/2014JD022453, 2014.</p><p>Acknowledgement<br>DustClim project is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462). We acknowledge PRACE for awarding access to HPC resources through the eDUST and eFRAGMENT1 projects.</p><p> </p>


2020 ◽  
Author(s):  
Jamie Banks ◽  
Bernd Heinold ◽  
Kerstin Schepanski

<p>Over the past several decades, new sources of dust aerosol have appeared in the Middle East and Central Asia due to the desiccation of lakes in the region. It is known that recently dry lakebeds can be efficient dust sources, due to the availability of readily erodible alluvial sediments. Such lake source regions include: Lake Urmia in western Iran; the Sistan Basin in the border area between Afghanistan, Iran, and Pakistan; and most notably, the Aral Sea on the border between Uzbekistan and Kazakhstan. A particularly large area (over 50,000 km<sup>2</sup>) of the former lakebed of the Aral Sea has become exposed to aeolian wind erosion, leaving Central Asia susceptible to dust storms originating from the young ‘Aral Kum’ (Aral Desert).</p><p>In this work we update the dust transport model COSMO-MUSCAT in order to simulate dust emissions from these relatively new dust sources. Making use of the Global Surface Water dataset (produced by the Copernicus Programme) in order to define the surface water coverage, we make estimates of dust emissions under three scenarios: 1) the ‘Past’, representative of water coverage in the 1980s; 2) the ‘Present’, representative of water coverage in the 2010s; and 3) the ‘Dry’ scenario, a worst-case future scenario in which currently drying lake regions are assumed to dry out completely under the pressure of climate change and water overuse. These scenarios are applied to the ‘Dustbelt’ modelling domain, covering North Africa, the Middle East and the Arabian Peninsula, and Central Asia as far east as western China.</p>


2020 ◽  
Author(s):  
Michail Mytilinaios ◽  
Lucia Mona ◽  
Francesca Barnaba ◽  
Sergio Ciamprone ◽  
Serena Trippetta ◽  
...  

<p>An advanced dust reanalysis with high spatial (at 10km x 10km) and temporal resolution is produced in the framework of DustClim project (Dust Storms Assessment for the development of user-oriented Climate Services in Northern Africa, Middle East and Europe) [1], aiming to provide reliable information on dust storms current conditions and predictions, focusing on the dust impacts on various socio-economic sectors.</p><p>This regional reanalysis is based on the assimilation of dust-related satellite observations from MODIS instrument [2], in the Multiscale Online Nonhydrostatic Atmosphere Chemistry model (NMMB-MONARCH) [3], over the region of Northern Africa, Middle East and Europe. The reanalysis is now available for a seven-year period (2011-2016) providing the following dust products: Columnar and surface concentration, distributed in 8 dust particle size bins, with effective radius ranging from 0,15μm to 7,1μm, dust load, dry and wet dust deposition, dust optical depth (DOD) and coarse dust optical depth (radius>1μm) at 550nm and profiles of dust extinction coefficient at 550nm.</p><p>A thorough evaluation of the reanalysis is in progress to assess the quality and uncertainty of the dust simulations, using dust-filtered products, retrieved from different measurement techniques, both from in-situ and remote sensing observations. The datasets considered for the DustClim reanalysis evaluation, provide observations of variables that are included in the model simulations. The DOD is provided by AERONET network [4] and by IASI [5], POLDER [6], MISR [7] and MODIS space-borne sensors; Dust extinction profiles are provided by ACTRIS/EARLINET network [8] and CALIPSO/LIVAS dataset [9]; Dust PM10 surface concentrations derived from INDAAF/SDT [10] network and estimated from PM10 measurements [11] performed within EEA/EIONET [12] network; Dust deposition measurements collected by the INDAAF/SDT and the CARAGA/DEMO [13] networks; Dust size distribution from in situ observations (ground-based and airborne); And column-averaged dust size distribution at selected stations from the AERONET network.</p><p>In this work, we present the results of the model evaluation for the year 2012. The first evaluation results will focus on dust extinction coefficient profiles from EARLINET and LIVAS, on DOD using AERONET, MISR and MODIS datasets, and on dust PM10 concentration from INDAAF/SDT network. Moreover, a DOD climatology covering the whole reanalysis period (2011-2016) will be compared with the results obtained from AERONET network.</p><p> </p><p>References</p><p>[1] https://sds-was.aemet.es/projects-research/dustclim</p><p>[2] https://modis.gsfc.nasa.gov/</p><p>[3] Di Tomaso et al., <em>Geosci. Model Dev.</em>, <strong>10</strong>, 1107-1129, doi:10.5194/gmd-10-1107-2017., 2017.</p><p>[4] https://aeronet.gsfc.nasa.gov/</p><p>[5] Cuesta et al., <em>J. Geophys. Res.</em>, <strong>120</strong>, 7099-7127, 2015.</p><p>[6] http://www.icare.univ-lille1.fr/parasol/overview/</p><p>[7] https://misr.jpl.nasa.gov/</p><p>[8] https://www.earlinet.org/</p><p>[9] Marinou et al., <em>Atmos. Chem. Phys.</em>, <strong>17</strong>, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, 2017.</p><p>[10] https://indaaf.obs-mip.fr/</p><p>[11] Barnaba et al., <em>Atmospheric environment</em>, <strong>161</strong>, 288-305, 2017.</p><p>[12] https://www.eionet.europa.eu/</p><p>[13] Laurent et al., <em>Atmos. Meas. Tech.</em>, <strong>8</strong>, 2801–2811, 2015.</p><p> </p><p> </p><p>Acknowledgement</p><p>DustClim project is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>


2019 ◽  
Vol 99 ◽  
pp. 01010
Author(s):  
Ali Al-Dousari ◽  
Ali Al Hamoud ◽  
Modi Ahmed ◽  
Noor Al-Dousari

Sand and dust storms (SDS) is a common weather phenomenon in the Middle East. Topography and the northern or northwesterly wind are the main control factors for types of SDS trajectories. The main SDS corridors in the Middle East were classified and spotted from March 2000 to March 2017. The SDS can be classified in the region in accordance to shape and magnitude into three main types namely; Small with 3 subtypes (Arrow shape-straight, Arrow shape-curved and Needle like), Intermediate with 3 subtypes (Curved, Hook and Straight), and Extensive with 6 subtypes (Spiral, Agglomerated-Dense, Agglomerated-Dispersed, Wavy, Hook-Single head, and Hook-multiple heads). Most of the trajectories are located within the northeastern parts of the Middle East. Dust properties led us to sort SDS and their indications. Dust deposits in the eastern Mediterranean Sea and the Red Sea and are initiated from Northern Desert of Africa (NDA). On the other hand, dust deposits in the Middle East originate from NDA, Western Desert of Iraq (WD), Mesopotamian Flood Plain (MFP), Ahwaz (HZ), Ahwar (HR) and Baluchistan Desert (BSH). The deposited dust in coastal areas is categorized as trimodal particle size distribution, finer mean size fractions with higher values of particles surface area and contains more carbonates and less quartz percentages compared to fallen dust in inland regions which is dominantly initiated from Western Desert of Iraq (WD), Nafud Desert (NFD) and Empty Quarter (EQ)..


Sign in / Sign up

Export Citation Format

Share Document