Ultrasonic-assisted adsorption of eriochrome black T and celestine blue dyes onto Ipomoea batatas-derived biochar

Author(s):  
Kovo G. Akpomie ◽  
Jeanet Conradie
Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
D Rosas-Ramírez ◽  
R Pereda-Miranda
Keyword(s):  

2018 ◽  
Vol 2 (2) ◽  
pp. 135
Author(s):  
Andi Anindita Rahmayani ◽  
Kadirman Kadirman ◽  
Muhammad Wiharto Caronge
Keyword(s):  

2018 ◽  
Vol 15 (2) ◽  
pp. 146
Author(s):  
BRILIAN DINANTI ◽  
FITRI HANDAJANI

<p>Liver is an organ with complex metabolism. When the liver is inflamed, cellular immunity will defend against inflammatory agents by stimulating immune cells to produce reactive oxygen species (ROS). Excessive ROS accumulation cause oxydative stress with increased  liver malondialdehyde (MDA) level. Some researches showed that purple sweet potato contain flavonoids (anthocyanins) that functioned as antioxydants. This study aimed to show the prophylactic effect of purple sweet potato extract to the liver MDA level of male Wistar rats induced by carrageenan.</p><p>This study used post-only control group method using 18 male Wistar rats divided into 3 groups: group of rats without treatment, group of rats induced by 0,1 ml of 1% carrageenan by intraplantar injection on day-8, and group of rats given with 872 mg/kgBW of purple sweet potato extract for 7 days and induced by 0,1 ml of 1% carrageenan. In the end of the study, the liver MDA levels were measured by Thio-Barbituric Acid method on each groups.</p><p>The results of One-Way ANOVA test showed there was no significant difference (p = 0,290) between group of rats without treatment (<em>x̅</em>= 207,50) and group of rats induced by carrageenan (<em>x̅</em>=233,17). Then, there is no significant difference (p = 0.978) between group of rats induced by carrageenan and group of rats given with prophylactic purple sweet potato extract and induced by carrageenan (<em>x̅</em>= 232,50).</p><p>The conclusion of this study is giving intraplantar injection of carrageenan can increase liver MDA level insignificantly and giving prophylactic purple sweet potato extract has an effect to decrease the liver MDA level of rats induced by carragenan insignificantly because it contains anthocyanins as antioxidants.</p><p> </p><strong>Keywords: </strong>Liver, <em>Ipomoea batatas</em> L., Malondialdehyde, Anthocyanins


2009 ◽  
Vol 62 ◽  
pp. 402-402
Author(s):  
S.L. Lewthwaite ◽  
P.J. Wright

The predominant diseases of the commercial kumara (Ipomoea batatas) or sweetpotato crop are caused by fungal pathogens The field disease pink rot results from infection by the fungus Sclerotinia sclerotiorum Lesions form on vines but may spread down stems to the roots The widespread nature of this disease in sweetpotato appears peculiar to New Zealand Scurf is a disease caused by Monilochaetes infuscans which occurs in the field but may proliferate amongst stored roots The disease causes a superficial discolouration of the root surface which is mainly cosmetic but can also increase root water loss in storage Infection by Ceratocystis fimbriata produces a disease known as black rot The disease can be transmitted amongst plants at propagation but is particularly rampant amongst roots in storage This disease is readily transmitted and can cause severe economic loss Fusarium oxysporum causes surface rots in stored roots characterised by light to dark brown lesions that tend to be firm dry and superficial The lesions may be circular and centred on wounds caused by insects or mechanical damage at harvest Soft rot caused by Rhizopus stolonifer generally occurs in roots after they are washed and prepared for the market Fungal infection occurs through wounds or bruised tissue producing distinctive tufts of white fungal strands and black spores


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew B. Pattikawa ◽  
Antonius Suparno ◽  
Saraswati Prabawardani

<em>Sweet potato is an important staple food crop especially for the local people of Central Highlands Jayawijaya. There are many accessions that have always been maintained its existence to enrich their various uses. Traditionally, sweet potato accessions were grouped based on the utilization, such as for animal feed, cultural ceremonies, consumption for adults, as well as for infants and children. This study was aimed to analyze the nutritional value of sweet potatoes consumed by infants and children of the Dani tribe. Chemical analyses were conducted at the Laboratory of Post-Harvest Research and Development Center, Cimanggu, Bogor. The results showed that each of 4 (four) sweet potato accessions which were consumed by infants and children had good nutrient levels. Accession Sabe showed the highest water content (72.56%), vitamin C (72.71 mg/100 g), Fe (11.85 mg/100 g), and K levels (130.41 mg / 100 grams). The highest levels of protein (1.44%), fat (1.00%), energy (154.43 kkal/100 gram), carbohydrate (35.47%), starch (30.26%), reducing sugar (3.44%), riboflavin (0.18 mg/100 g), and vitamin A (574.40 grams IU/100 were produced by accession Manis. On the other hand, accession Saborok produced the highest value for ash content (1.32%), vitamin E (28.30 mg/100 g), and ?-carotene (64.69 ppm). The highest level of crude fiber (1.81 %) and thiamin (0.36 mg/100 g) was produced by accession Yuaiken.</em>


Sign in / Sign up

Export Citation Format

Share Document