The Formula for Apparent Viscosity of Polymer Melt Extruding Through a Capillary Under a Superimposed Vibration

2005 ◽  
Vol 44 (8-9) ◽  
pp. 1645-1656 ◽  
Author(s):  
Yue Jun Liu
2014 ◽  
Vol 1053 ◽  
pp. 231-234 ◽  
Author(s):  
Quan Wang ◽  
Xiao Sun ◽  
Zheng Huan Wu

A novel rheological measuring apparatus was designed, which introduced an additional sinusoidal vibration in parallel on the extruding direction of polymer melt in this paper. Melt rheology of polypropylene filled CaCO3 particles in various amounts of filler (i.e. with 3 and 20 wt%) during capillary melt-extrusion were investigated respectively. The effects of vibration parameters on rheological behaviors were studied. Compared with the steady extrusion, the apparent viscosity of filled system decreased remarkably with the increase of vibration frequency and amplitude. The apparent viscosity reached to the minimum value as vibration frequency was about 8 Hz. When the filled percentage of CaCO3 was low, the response of apparent viscosity will be more distinct with the increasing vibration parameters.


Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


2014 ◽  
Vol 35 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Iwona Michalska-Pożoga

Abstract The paper presents the summary of research on polymer melt particle motion trajectories in a disc zone of a screw-disk extruder. We analysed two models of its structure, different in levels of taken simplifications. The analysis includes computer simulations of material particle flow and results of experimental tests to determine the properties of the resultant extrudate. Analysis of the results shows that the motion of melt in the disk zone of a screw-disk extruder is a superposition of pressure and dragged streams. The observed trajectories of polymer particles and relations of mechanical properties and elongation of the molecular chain proved the presence of a stretching effect on polymer molecular chains.


Author(s):  
Felipe Oliveira Basso ◽  
Paulo Zdanski ◽  
Diego Beppler ◽  
Miguel Vaz Jr.

1993 ◽  
Vol 8 (4) ◽  
pp. 328-334
Author(s):  
T. Kegasawa ◽  
J. L. White
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document