scholarly journals Singular matrix variate Birnbaum-Saunders distribution under elliptical models

Author(s):  
José A. Díaz-García ◽  
Francisco J. Caro-Lopera
Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Zinoviy Landsman ◽  
Tomer Shushi

The class of log-elliptical distributions is well used and studied in risk measurement and actuarial science. The reason is that risks are often skewed and positive when they describe pure risks, i.e., risks in which there is no possibility of profit. In practice, risk managers confront a system of mutually dependent risks, not only one risk. Thus, it is important to measure risks while capturing their dependence structure. In this short paper, we compute the multivariate risk measures, multivariate tail conditional expectation, and multivariate tail covariance measure for the family of log-elliptical distributions, which captures the dependence structure of the risks while focusing on the tail of their distributions, i.e., on extreme loss events. We then study our result and examine special cases, as well as the optimal portfolio selection using such measures. Finally, we show how the given multivariate tail moments can also be computed for log-skew elliptical models based on similar approaches given for the log-elliptical case.


2007 ◽  
Vol 55 (5) ◽  
pp. 417-428 ◽  
Author(s):  
H. Radjavi ◽  
A. R. Sourour

1970 ◽  
Vol 11 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Yik-Hoi Au-Yeung

We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by Fn an n dimensional left vector space over F. If A is a matrix with elements in F, we denote by A* its conjugate transpose. In all three cases of F, an n × n matrix A is said to be hermitian if A = A*, and we say that two n × n hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that UAU* and UBU* are diagonal matrices. We shall regard a vector u ∈ Fn as a l × n matrix and identify a 1 × 1 matrix with its single element, and we shall denote by diag {A1, …, Am} a diagonal block matrix with the square matrices A1, …, Am lying on its diagonal.


Author(s):  
R. Penrose

This paper describes a generalization of the inverse of a non-singular matrix, as the unique solution of a certain set of equations. This generalized inverse exists for any (possibly rectangular) matrix whatsoever with complex elements. It is used here for solving linear matrix equations, and among other applications for finding an expression for the principal idempotent elements of a matrix. Also a new type of spectral decomposition is given.


1979 ◽  
Vol 31 (2) ◽  
pp. 392-395 ◽  
Author(s):  
J. A. Lester

1. Introduction. Our interest here lies in the following theorem:THEOREM 1. Assume there is defined on Rn (n ≧ 3) a “square-distance” of the formwhere (gij) is a given symmetric non-singular matrix over the reals and x = (x1, …, xn), y = (y1, …, yn) ∈ Rn. Assume further that f is a bijection ofRnwhich preserves a given fixed square-distance ρ, i.e. d(x, y) = ρ if and only if d(ƒ(x),ƒ(y)) = ρ. Then (unless ρ = 0 and (gij) is positive or negative definite) ƒ(x) = Lx + ƒ(0), where L is a linear bijection ofRnsatisfying d(Lx, Ly) = ±d(x, y) for all x, y ∈ Rn (the – sign is possible if and only if ρ = 0 and (gij) has signature 0).


Nature ◽  
1963 ◽  
Vol 200 (4907) ◽  
pp. 716-716
Author(s):  
J. C. KOOP

Sign in / Sign up

Export Citation Format

Share Document