A one-dimensional model for vertical distribution of particles in a stratified lake

1993 ◽  
Vol 25 (1) ◽  
pp. 119-121
Author(s):  
Xavier Casamitjana ◽  
Geoffrey Schladow
2009 ◽  
Vol 6 (10) ◽  
pp. 2041-2061 ◽  
Author(s):  
Y. Ye ◽  
C. Völker ◽  
D. A. Wolf-Gladrow

Abstract. A one-dimensional model of Fe speciation and biogeochemistry, coupled with the General Ocean Turbulence Model (GOTM) and a NPZD-type ecosystem model, is applied for the Tropical Eastern North Atlantic Time-Series Observatory (TENATSO) site. Among diverse processes affecting Fe speciation, this study is focusing on investigating the role of dust particles in removing dissolved iron (DFe) by a more complex description of particle aggregation and sinking, and explaining the abundance of organic Fe-binding ligands by modelling their origin and fate. The vertical distribution of different particle classes in the model shows high sensitivity to changing aggregation rates. Using the aggregation rates from the sensitivity study in this work, modelled particle fluxes are close to observations, with dust particles dominating near the surface and aggregates deeper in the water column. POC export at 1000 m is a little higher than regional sediment trap measurements, suggesting further improvement of modelling particle aggregation, sinking or remineralisation. Modelled strong ligands have a high abundance near the surface and decline rapidly below the deep chlorophyll maximum, showing qualitative similarity to observations. Without production of strong ligands, phytoplankton concentration falls to 0 within the first 2 years in the model integration, caused by strong Fe-limitation. A nudging of total weak ligands towards a constant value is required for reproducing the observed nutrient-like profiles, assuming a decay time of 7 years for weak ligands. This indicates that weak ligands have a longer decay time and therefore cannot be modelled adequately in a one-dimensional model. The modelled DFe profile is strongly influenced by particle concentration and vertical distribution, because the most important removal of DFe in deeper waters is colloid formation and aggregation. Redissolution of particulate iron is required to reproduce an observed DFe profile at TENATSO site. Assuming colloidal iron is mainly composed of inorganic colloids, the modelled colloidal to soluble iron ratio is lower that observations, indicating the importance of organic colloids.


1995 ◽  
Vol 52 (9) ◽  
pp. 1978-1989 ◽  
Author(s):  
John T. Anderson ◽  
Brad de Young

A one-dimensional model is developed to describe the vertical distribution of cod eggs and larvae on the northeastern Newfoundland Shelf. The model is dependent on egg buoyancy, temperature-dependent development, and age-dependent changes in density for eggs in good and poor condition. The model was fit to physical oceanographic data from the inner and outer shelf collected in 1991. Output from the model compared favourably with field observations. Cod eggs (stages I to III) were bimodally distributed above and below 100 m depth. Late stage eggs (stage IV) and larvae (5–6 mm) were only abundant in surface waters (<50 m). There was a progression from deeper to shallower depths as cod eggs developed through to larvae. Cod eggs observed deeper in the water column were thought to be in poor condition and were probably sinking. The model demonstrates that the vertical distribution of cod eggs is sensitive to changes in water temperature, water density (salinity), and egg condition.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


1992 ◽  
Vol 25 (10) ◽  
pp. 2889-2896 ◽  
Author(s):  
R D Gianotti ◽  
M J Grimson ◽  
M Silbert

Sign in / Sign up

Export Citation Format

Share Document