Application of Thermochemistry and X-ray Semi-Quantitative Phase Analysis in Forsterite Powder Synthesis by Solid State Reaction of Magnesium Oxide and Mg-Chlorite

2017 ◽  
Vol 76 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Amir Javad Nikkhah ◽  
Esmaeil Salahi ◽  
Mansour Razavi
1966 ◽  
Vol 38 (12) ◽  
pp. 1741-1745 ◽  
Author(s):  
R. F. Karlak ◽  
D. S. Burnett

1957 ◽  
Vol 1 ◽  
pp. 39-58
Author(s):  
Ralph H. Hiltz ◽  
Stanley L. Lopata

AbstractIn view of present difficulties encountered in met alio graphic methods of phase analysis of titanium and its alloys, the possibility of utilizing integrated X-ray intensities for phase analysis was investigated. Power Formula variables were calculated for titanium, and relative areas of three alpha and one beta peak were determined. Recorded X-ray intensities were obtained from a large number of titanium specimens. The recorded intensities were analyzed and the results compared with those from metallographic analysis. The errors in the method arising from the nature of titanium, texture and peak overlapping, were studied and where possible, compensated for by adjusting the method of measurement and calculation.


2014 ◽  
Vol 47 (3) ◽  
pp. 835-846 ◽  
Author(s):  
Alessandro F. Gualtieri ◽  
Vincenzo Riva ◽  
Andrea Bresciani ◽  
Stefano Maretti ◽  
Marco Tamburini ◽  
...  

For the first time, this work inspects the accuracy of quantitative phase analysis of both crystalline and amorphous components of stoneware tiles and bricks. A number of variables were considered: the nature of the internal standard, experimental conditions and counting statistics. The so-calledG-factor method has also been applied. The results of the X-ray powder diffraction analysis have been compared with the results obtained with optical microscopy and image analysis. Only the mixtures spiked with corundum and silicon yielded accurate weight estimates of the amorphous fraction, whereas the use of highly X-ray absorbing internal standards (such as fluorite, rutile and zincite) resulted in gross underestimations. In fact, microabsorption effects are found to drastically reduce the accuracy of the results when standards with linear X-ray absorption coefficients higher than 100 cm−1are employed. It was found that very low counting statistics reduced the calculated amorphous fractions in both bricks and stoneware tiles owing to partial masking of the major peak of the internal standard, namely corundum. The application of theG-factor method to the systems investigated was also evaluated. The results are poorer than those obtained using the internal standard.


2007 ◽  
Vol 57 (12) ◽  
pp. 1145-1148 ◽  
Author(s):  
LaReine A. Yeoh ◽  
Klaus-Dieter Liss ◽  
Arno Bartels ◽  
Harald Chladil ◽  
Maxim Avdeev ◽  
...  

2005 ◽  
Vol 20 (3) ◽  
pp. 218-223 ◽  
Author(s):  
Chang-An Wang ◽  
Aiguo Zhou ◽  
Liang Qi ◽  
Yong Huang

Materials in the Ti–Al–C ternary system commonly contain three coexisting phases, Ti3AlC2, Ti2AlC, and TiC. Quantitative phase analysis in this ternary system was investigated using X-ray diffraction. First, nonoverlap diffraction peaks were selected: the (002) peak at 2θ=9.5° for Ti3AlC2 (I∕I0=26.5), the (002) peak at 2θ=13.0° for Ti2AlC (I∕I0=39), and the (111) peak at 2θ=35.9° for TiC (I∕I0=78), respectively. Then, based on the mixing-sample method without internal standards, a set of equations was derived for determining the amounts of Ti3AlC2, Ti2AlC, and TiC in a sample using the intensities of the selected diffraction peaks. Finally, the applicability and error sources for this method were investigated. The method is simple and straightforward, and is applicable to the entire Ti–Al–C ternary system, since the derivation of this equation group is self-checking.


Sign in / Sign up

Export Citation Format

Share Document