Advances in Cement Research
Latest Publications


TOTAL DOCUMENTS

1191
(FIVE YEARS 179)

H-INDEX

42
(FIVE YEARS 6)

Published By Thomas Telford Ltd.

1751-7605, 0951-7197

2021 ◽  
pp. 1-32
Author(s):  
Nancy Beuntner ◽  
Karl-Christian Thienel

The fundamental knowledge about the reaction mechanism of calcined clays in cement and the mutual interaction is important for their assessment as supplementary cementitious material and the resulting concrete properties. In this study, the hydration of two cements differing in alkali content and with the addition of a highly reactive, aluminum-rich metakaolin and one calcined common clay with low kaolinite content was investigated during the first 48 hours. For this purpose, four established methods that describe the early hydration were used: isothermal calorimetry, thermogravimetry, in-situ X-ray diffraction and chemical analysis of pore solution. This so far unique combination of methods enabled the understanding of the complex binder (cement-calcined clay) hydration behavior. The results showed considerable differences depending on type of calcined clay, its chemical-mineralogical composition, fineness and especially towards its reaction mechanism with aluminate clinker phases controlled by the composition of pore solution. The impact of calcined clay on the early clinker hydration exceeds significantly physical effects only.


2021 ◽  
pp. 1-29
Author(s):  
Sanghamitra Bharati ◽  
Manjini Sambandam ◽  
Pankaj Lochan

Strict environmental norms and raising concern to recycle solid wastes generated during ironmaking and steelmaking processes has been the key driving force in developing various technologies. The present study describes a calcium-aluminate clinker prepared from steel ladle slag by modifying its mineral compositions. The slag paste prepared by mixing with water exhibited flash setting behaviour due to the presence of C12A7 and C3A phases. In contrast, the slag clinker, developed by sintering a mixture of pre-determined quantity of slag and Al2O3 at 1400°C for 2h and 4h, contained CA, CA2, Gehlenite and ‘Q’ phases. Hydration of slag clinker contained stable C3AH6, AH3 and stratlingite with preferential growth of calcium-aluminate hydrate prisms along c-axis that provided a well-defined raceme like morphology with interlinked structure. It improved the setting time and crushing strength of the clinkers after 6h and 24h curing at room temperature. Additionally, presence of ‘Q’ phase with lamellar prismatic crystals also helped in enhancing the strength. The developed clinker also exhibited superior crushing strength as compared to commercially available calcium aluminate cement of medium purity. The slag, used as a source of CaO could replace CaCO3 completely and thus contributed to reduction in CO2 emission during clinker making process.


2021 ◽  
pp. 1-44
Author(s):  
Samuel Adu-Amankwah ◽  
Suraj Rahmon ◽  
Leon Black

Limestone ternary cements have attracted significant research and commercial attention recently, for technical and environmental reasons. Standardization of these cements is imminent under BS EN197-5. Presently, detailed understanding of the hydration and microstructure evolution of limestone ternary cements from different alumina-rich supplementary cementitious materials (SCMs) exists in the scientific literature; improved reaction kinetics and additional phase assemblages refine the pore structure. However, understanding of the performance of these cements under exposure conditions is less prevalent. In this contribution, we review these data in a way that allows stakeholders to appreciate the capabilities of the different compositions and their performance. We focus our discussion on critically examining the interplay between the cement composition and the microstructure on durability. It is demonstrated that limestone ternary cements offer a pathway for reducing the embodied CO2 of concrete without compromising their performance. The resistance to chloride ingress, sulphate attack and ASR are significantly improved in a manner similar to binary cements. Carbonation and freeze-thaw resistance is generally lower than OPC but adequate air entrainment can offer improvement in freeze-thaw resistance. The challenge to widespread adoption of these cements is evidence of durability under field conditions. To this end, we recommend large-scale field trialling of these cements and understanding of the role of combined exposures on durability and mechanical properties.


2021 ◽  
pp. 1-27
Author(s):  
Yanlong Li ◽  
Junhao Chen ◽  
Lifeng Wen ◽  
Junzhong Wang ◽  
Kangping Li

It is important to evaluate the internal damage of concrete under load conditions in order to evaluate its stability and usability for building applications. In this study, the uniaxial compression of concrete with initial defect was performed, and the internal damage of concrete was monitored by acoustic emission(AE) technology in real time to study the damage process and mechanism. The mechanical properties of concrete specimens with different initial defect were determined, and the cumulative impact count of AE was recorded. The response characteristics of AE in the process of concrete compression and damage were obtained. According to the analysis of the influence of the initial defect on the Kaiser effect and since the irreversibility of the AE process is related to the degree of damage caused by the material under the pre-load, it was determined that the initial defect will aggravate the damage inside the concrete under the same load level. Based on the statistics and analysis of the Weibull cumulative function, the correlation between AE parameters and damage variables was discussed.


2021 ◽  
pp. 1-30
Author(s):  
Jiaxing Xu ◽  
Keren Zheng ◽  
Lou Chen ◽  
Xuejin Zhou ◽  
Qiang Yuan

Pore solution expression is the most commonly used method to obtain aqueous phase in cementitious material. However, the high pressure applied on the sample may affect solid phase composition. This paper presents an experimental study on the chemical and mineral composition of cement paste before and after the expression. Results indicate that a small part of the alkali contained in samples can be excluded during the pore solution expression, mainly depending on alkali concentration in the pore solution. Due to the expulsion of interlayer water in C-S-H under high pressure, the pore solution expression reduces bound water content measured by TGA. The portlandite content determined by TGA is not affected by pore solution expression, but it leads to an overestimation of portlandite in QXRD, because of the enhanced preferred orientation of the (001) plane under the applied high pressure. In addition, the size of portlandite crystal decreases to some extent due to the creep caused by pressure. The content of hemicarbonate phase is found to decrease slightly after pore solution expression, which may be aroused by the increased solubility under high pressure.


2021 ◽  
pp. 1-29
Author(s):  
Himabindu Myadaraboina ◽  
David Law ◽  
Indubhushan Patanikuni

The incorporation of high volume fly ash, up to 80%, in concrete without compromising the mechanical and durability properties is potentially very advantageous to the concrete industry in enabling the delivery of economic, social and environmental benefits. To assess this, two high volume fly ash mix designs incorporating 80% class F ultra-fine fly ash, known as microash and hydrated lime, with 10% silica fume and 0 % silica fume have been investigated. Properties investigated are compressive strength, carbonation, chloride ion penetration, water absorption and permeability. The specimens were cured for a maximum period of 90 days to optimize completion of the hydration reaction. The results show that the concrete manufactured with 80% microash exhibited compressive strength in excess of 40 MPa at 28 days and over 70 MPa at 90 days. The material also displayed excellent durability properties compared to the normal Portland cement concrete and other high volume fly ash concretes. The addition of silica fume improved the strength and durability properties of the material.


2021 ◽  
pp. 1-23
Author(s):  
Arash Sedaghatdoost ◽  
Kiachehr Behfarnia ◽  
Mohammad Bayati ◽  
Ali Hendi ◽  
Mohammad Sadegh Vaezi

In the present paper, the effect of using multi-walled carbon nanotubes (MWCNTs) with different concentrations of 0, 0.05, 0.1, and 0.15 wt% on the mechanical properties and microstructure of alkali-activated slag (AAS) mortars at temperatures of 23, 200, 400, 600, and 800°C was investigated. In order to investigate the strength parameters of specimens, the mechanical strength and mass-loss of the specimens at ambient temperatures and after exposure to elevated temperatures were determined. Petrographic image analysis also was conducted to analyze the microstructures of the specimens. Moreover, the Image processing toolbox of Matlab software was used to calculate the pore area of the samples at room temperature. The results showed that the application of MWCNTs improved the mechanical properties of the AAS mortars at ambient and elevated temperatures. The addition of the MWCNTs improved the mechanical properties of the AAS mortars up to 69 and 85% for compressive and flexural strength, respectively. At 400°C, compressive strength increment of the specimens compensated the deterioration rate, which was about 3% mass-loss and this temperature should be considered the maximum tolerable degree for AAS mortars.


2021 ◽  
pp. 1-26
Author(s):  
Amanda Pereira Vieira ◽  
Romildo Dias Toledo Filho ◽  
Luís Marcelo Tavares ◽  
Guilherme Chagas Cordeiro

2021 ◽  
pp. 1-24
Author(s):  
Yuan Gao ◽  
Hongwen Jing ◽  
Zefu Zhou ◽  
Xinshuai Shi ◽  
Zhenlong Zhao

Sign in / Sign up

Export Citation Format

Share Document