Effects of AlN Content and Sintering Atmospheres on the Thermal Conductivity of Hot-Pressed SiC Ceramics

Author(s):  
Jingren Li ◽  
Wenzhong Lu ◽  
Hai Jiang
2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


2015 ◽  
Vol 41 (10) ◽  
pp. 13547-13552 ◽  
Author(s):  
Qisong Li ◽  
Yujun Zhang ◽  
Hongyu Gong ◽  
Haibin Sun ◽  
Teng Li ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1909 ◽  
Author(s):  
Huilin Lun ◽  
Yi Zeng ◽  
Xiang Xiong ◽  
Lei Zhao ◽  
Dongling Li ◽  
...  

Hexagonal boron nitride/silicon carbide (h-BN/SiC) ceramics were fabricated by a spark plasma sintering (SPS) method. Phase and microstructure of ceramics were characterized and observed, respectively, using the X-ray diffraction, scanning electron microscope and electron probe microanalysis. The effect of molar ratios of SiC to h-BN on the microstructure, relative density, hardness, thermal conductivity, and the heating rate by microwaves on the ceramics were investigated. The results showed that the orientation of flake-like h-BN was significantly influenced by SiC content in h-BN/SiC ceramics. With the increasing of SiC content, the h-BN flakes gradually became an isotropic distribution from the preferred orientation aligning in a SPS pressure direction. The relative density of h-BN/SiC ceramics was 97.6 ± 0.9% at a molar ratio of SiC to h-BN of 40/60 mol%. The preferential orientation of h-BN flakes contributed to a relatively high thermal conductivity along the SPS pressure direction, which was beneficial to increasing the heating rate of h-BN/SiC ceramics in microwave fields.


2003 ◽  
Vol 18 (8) ◽  
pp. 1854-1862 ◽  
Author(s):  
You Zhou ◽  
Kiyoshi Hirao ◽  
Yukihiko Yamauchi ◽  
Shuzo Kanzaki

SiC ceramics were prepared from a β–SiC powder doped with two different sintering additives—a mixture of La2O3and Y2O3and a mixture of Al2O3and Y2O3—by hot pressing and annealing. Their microstructures, phase compositions, lattice oxygen contents, and thermal conductivities were evaluated. The SiC doped with rare-earth oxides attained thermal conductivities in excess of 200 W/(m K); however, the SiC doped with additives containing alumina had thermal conductivities lower than 71 W/(m K). The high thermal conductivity of the rare-earth-oxide-doped SiC was attributed to the low oxygen content in SiC lattice, high SiC–SiC contiguity, and lack of β– to α–SiC polytypic transformation. The low thermal conductivity of the alumina-doped SiC was attributed to the point defects resulting from the dissolution of Al2O3into SiC lattice and the occurrence of polytypic transformation.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4768
Author(s):  
Sheng Ge ◽  
Xiumin Yao ◽  
Yingying Liu ◽  
Hang Duan ◽  
Zhengren Huang ◽  
...  

Silicon carbide (SiC) ceramics with Y2O3-Er2O3 as sintering additives were prepared by spark plasma sintering (SPS). The effects of sintering temperatures and Y2O3-Er2O3 contents on the microstructure, thermal conductivity, electrical, and mechanical properties were investigated. The increasing of sintering temperatures promoted the densification of SiC ceramics, thus increasing the thermal conductivity and electrical resistivity. With the increase of the sintering additive contents, the electrical resistivity increased due to the formation of the electrical insulating network; and the thermal conductivity first increased and then decreased, which was related to the content and distribution of the secondary phase among the SiC grains. The SiC ceramics sintered at 2000 °C with 9 wt.% Y2O3-Er2O3 exhibited higher electrical resistivity and thermal conductivity, which were 4.28 × 109 Ω·cm and 96.68 W/m·K, respectively.


2011 ◽  
Vol 18 (16) ◽  
pp. 162014 ◽  
Author(s):  
Young-Ju Lee ◽  
Yi-Hyun Park ◽  
Tatsuya Hinoki

Sign in / Sign up

Export Citation Format

Share Document