Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide

2003 ◽  
Vol 18 (8) ◽  
pp. 1854-1862 ◽  
Author(s):  
You Zhou ◽  
Kiyoshi Hirao ◽  
Yukihiko Yamauchi ◽  
Shuzo Kanzaki

SiC ceramics were prepared from a β–SiC powder doped with two different sintering additives—a mixture of La2O3and Y2O3and a mixture of Al2O3and Y2O3—by hot pressing and annealing. Their microstructures, phase compositions, lattice oxygen contents, and thermal conductivities were evaluated. The SiC doped with rare-earth oxides attained thermal conductivities in excess of 200 W/(m K); however, the SiC doped with additives containing alumina had thermal conductivities lower than 71 W/(m K). The high thermal conductivity of the rare-earth-oxide-doped SiC was attributed to the low oxygen content in SiC lattice, high SiC–SiC contiguity, and lack of β– to α–SiC polytypic transformation. The low thermal conductivity of the alumina-doped SiC was attributed to the point defects resulting from the dissolution of Al2O3into SiC lattice and the occurrence of polytypic transformation.

2014 ◽  
Vol 606 ◽  
pp. 197-200 ◽  
Author(s):  
Alexandra Kovalčíková ◽  
Ján Dusza ◽  
Pavol Šajgalík

The influence of microstructural variations on the macro/microhardness, nanohardness and Young`s modulus of liquid phase sintered silicon carbide (LPS SiC) has been observed. In order to modify the microstructures some samples were further heat treated at 1850°C for 5 hours to promote grain growth. The depth-sensing indentation tests of SiC materials were performed at several peak loads in the range 10-400 mN. For a better assessment, the indentation values of hardness and Young`s modulus modulus of SiC matrix were also compared to the hardness and Elastic modulus of individual SiC grains. The comparison of macro/micro and nanohardness showed that nanohardness was significantly higher, generally by 6-7 GPa. The nanohardness of individual plate-like SiC grains was around 2 GPa higher than nanohardness of SiC matrix.


2004 ◽  
Vol 24 (2) ◽  
pp. 265-270 ◽  
Author(s):  
You Zhou ◽  
Kiyoshi Hirao ◽  
Koji Watari ◽  
Yukihiko Yamauchi ◽  
Shuzo Kanzaki

2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


2005 ◽  
Vol 80 (4) ◽  
pp. 1047-1052 ◽  
Author(s):  
Tor Grande ◽  
Hkon Sommerset ◽  
Eirik Hagen ◽  
Kjell Wiik ◽  
Mari-Ann Einarsrud

Sign in / Sign up

Export Citation Format

Share Document