Slot Antenna Miniaturization Using Folded Slot for ISM Band Applications

2021 ◽  
pp. 1-9
Author(s):  
Hashibul Alam ◽  
SK. Moinul Haque
2013 ◽  
Vol 6 (2) ◽  
pp. 167-172 ◽  
Author(s):  
Srinivasan Ashok Kumar ◽  
Thangavelu Shanmuganantham

A novel coplanar waveguide fed Industrial, Scientific, and Medical (ISM) band implantable crossed-type triangular slot antenna is proposed for biomedical applications. The antenna operates at the center frequency of 2450 MHz, which is in ISM band, to support GHz wideband communication for high-data rate implantable biomedical application. The size of the antenna is 78 mm3 (10 mm × 12 mm × 0.65 mm). The simulated and measured bandwidths are 7.9 and 8.2% at the resonant frequency of 2.45 GHz. The specific absorption rate distribution induced by the implantable antenna inside a human body tissue model is evaluated. The communication between the implanted antenna and external device is also examined. The proposed antenna has substantial merits such as miniaturization, lower return loss, better impedance matching, and high gain over other implanted antennas.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Mohammad Mahdi Honari ◽  
Mohammad Saeid Ghaffarian ◽  
Rashid Mirzavand

In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponential strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without compromising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size.


Sign in / Sign up

Export Citation Format

Share Document