Contribution of Protein Conformation to Heme Stereochemistry and Reactivity. Low-Temperature Magnetic Circular Dichroism Data

1989 ◽  
Vol 7 (1) ◽  
pp. 207-224 ◽  
Author(s):  
Yu. A. Sharonov ◽  
V. F. Pismensky ◽  
E. G. Yarmola
1976 ◽  
Vol 159 (3) ◽  
pp. 811-813 ◽  
Author(s):  
T Brittain ◽  
J Springall ◽  
C Greenwood ◽  
A J Thomson

The spin states of the haem components of mixed-valence cytochrome oxidase were studied at room temperature and at temperature down to 20K by using magnetic circular dichroism. The room-temperature studies show the presence of a low-spin ferrous haem together with a low-spin ferric haem, which we attribute to heams a3 and a respectively. At temperatures below 100K it appears that the CO of the mixed-valence CO complex may be irreversibly photolysed, and that in this case haems a and a3 assume their high-spin states. Thus in this enzyme haem-haem interactions appear possible at temperatures below 100K.


1981 ◽  
Vol 670 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Andrew J. Thomson ◽  
A.Edward Robinson ◽  
Michael K. Johnson ◽  
Jose J.G. Moura ◽  
Isobel Moura ◽  
...  

1983 ◽  
Vol 215 (2) ◽  
pp. 303-316 ◽  
Author(s):  
C Greenwood ◽  
B C Hill ◽  
D Barber ◽  
D G Eglinton ◽  
A J Thomson

The visible-near-i.r.-region m.c.d. (magnetic-circular-dichroism) spectrum recorded at low temperature in the range 450-900 nm is reported for oxidized resting mammalian cytochrome c oxidase. M.c.d. magnetization curves determined at different wavelengths reveal the presence of two paramagnetic species. Curves at 576, 613 and 640 nm fit well to those expected for an x,y-polarized haem transition with g values of 3.03, 2.21 and 1.45, i.e. cytochrome a3+. The m.c.d. features at 515, 785 and 817 nm magnetize as a S = 1/2 paramagnet with average g values close to 2, and simulated m.c.d. magnetization curves obtained by using the observed g values of CuA2+, i.e. 2.18, 2.03 and 1.99, fit well to the experimental observations. The form of the m.c.d. magnetization curve at 466 nm is curious, but it can be explained if CuA2+ and cytochrome a3+ contribute with oppositely signed bands at this wavelength. By comparing the m.c.d. spectrum of the enzyme with that of extracted haem a-bisimidazole complex it has been possible to deconvolute the m.c.d. spectrum of CuA2+, which shows transitions throughout the spectral region from 450 to 950 nm. The m.c.d.-spectral properties of CuA2+ were compared with those of a well-defined type I blue copper centre in azurin isolated from Pseudomonas aeruginosa. The absolute intensities of the m.c.d. signals at equal fields and temperatures for CuA2+ are 10-20-fold greater than those for azurin. The optical spectrum of CuA2+ strongly suggests an assignment as a d9 ion rather than Cu(I) bound to a thiyl radical.


Sign in / Sign up

Export Citation Format

Share Document