The pathogenicity, structural and functional exploration of human HMGB1 single nucleotide polymorphisms using in silico study

2019 ◽  
Vol 38 (15) ◽  
pp. 4471-4482
Author(s):  
P. Santhiya ◽  
A. Christian Bharathi ◽  
B. Syed Ibrahim
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Jiaping Chen ◽  
Yue Jiang ◽  
Jing Zhou ◽  
Sijun Liu ◽  
Yayun Gu ◽  
...  

Variants in microRNA genes may affect their expression by interfering with the microRNA maturation process and may substantially contribute to the risk of breast cancer. Recent studies have identified miR-10b as an interesting candidate because of its close association with the metastatic behavior of breast cancer. However, the roles of miR-10b-related single nucleotide polymorphisms in breast cancer susceptibility remain unclear. This case-control study evaluated the associations between variants in the upstream transcription regulation region of miR-10b and the risk of breast cancer among Chinese women. Seven potentially functional SNPs were investigated using genotyping assays. The potential biological functions of the identified positive SNPs were further evaluated using in silico databases. We found that rs4078756, which was located at the promoter region of miR-10b, was significantly associated with breast cancer risk (rs4078756 AG/GG versus AA, adjusted odds ratio: 1.17, 95% confidence interval: 1.02–1.35). The other six single nucleotide polymorphisms exhibited negative associations. Based on the in silico prediction, rs4078756 potentially regulated miR-10b expression through promoter activation or repression. These findings indicate that a potentially functional SNP (rs4078756) in the promoter region of miR-10b may contribute to breast cancer susceptibility among Chinese women.


2018 ◽  
Author(s):  
Brian S. Helfer ◽  
Darrell O. Ricke

AbstractHigh throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) provides additional applications for DNA forensics including identification, mixture analysis, kinship prediction, and biogeographic ancestry prediction. Public repositories of human genetic data are being rapidly generated and released, but the majorities of these samples are de-identified to protect privacy, and have little or no individual metadata such as appearance (photos), ethnicity, relatives, etc. A reference in silico dataset has been generated to enable development and testing of new DNA forensics algorithms. This dataset provides 11 million SNP profiles for individuals with defined ethnicities and family relationships spanning eight generations with admixture for a panel with 39,108 SNPs.


Author(s):  
Matteo Calcagnile ◽  
Patricia Forgez ◽  
Antonio Iannelli ◽  
Cecilia Bucci ◽  
Marco Alifano ◽  
...  

AbstractThe current SARS covid-19 epidemic spread appears to be influenced by ethnical, geographical and sex-related factors that may involve genetic susceptibility to diseases. Similar to SARS-CoV, SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells, notably type II alveolar epithelial cells. Importantly, ACE2 gene is highly polymorphic. Here we have used in silico tools to analyze the possible impact of ACE2 single-nucleotide polymorphisms (SNPs) on the interaction with SARS-CoV-2 spike glycoprotein. We found that S19P (common in African people) and K26R (common in European people) were, among the most diffused SNPs worldwide, the only two SNPs that were able to potentially affect the interaction of ACE2 with SARS-CoV-2 spike. FireDock simulations demonstrated that while S19P may decrease, K26R might increase the ACE2 affinity for SARS-CoV-2 Spike. This finding suggests that the S19P may genetically protect, and K26R may predispose to more severe SARS-CoV-2 disease.


Sign in / Sign up

Export Citation Format

Share Document