scholarly journals In silicoidentification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase

Author(s):  
Anshuman Chandra ◽  
Meenakshi Chaudhary ◽  
Imteyaz Qamar ◽  
Nagendra Singh ◽  
Vikrant Nain
2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Gaofei Lu ◽  
Gregory R. Bluemling ◽  
Paul Collop ◽  
Michael Hager ◽  
Damien Kuiper ◽  
...  

ABSTRACT Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn2+ is required for enzymatic activity, while Mg2+ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5′-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2′-C-methyl- and 2′-C-ethynyl-substituted analog 5′-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.


2021 ◽  
Author(s):  
Vasundara Srinivasan ◽  
Hevila Brognaro ◽  
Prince Rajaiah Prabhu ◽  
Edmarci Elisa de Souza ◽  
Sebastian Guenther ◽  
...  

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to aid coronaviruses in evading the hosts innate immune responses. We established a high-throughput X-ray screening to identify inhibitors by elucidating the native PLpro structure refined to 1.42 Angstroms and performing co-crystallization utilizing a diverse library of selected natural compounds. We identified three phenolic compounds as potential inhibitors. Crystal structures of PLpro inhibitor complexes, obtained to resolutions between 1.7-1.9 Angstroms, show that all three compounds bind at the ISG15/Ub-S2 allosteric binding site, preventing the essential ISG15-PLpro molecular interactions. All compounds demonstrate clear inhibition in a deISGylation assay, two exhibit distinct antiviral activity and one inhibited a cytopathic effect in a non-cytotoxic concentration range. These results highlight the druggability of the rarely explored ISG15/Ub-S2 PLpro allosteric binding site to identify new and effective antiviral compounds. Importantly, in the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


2015 ◽  
Vol 22 (11) ◽  
pp. 1383-1399 ◽  
Author(s):  
Marketa Svarcova ◽  
Martin Kratky ◽  
Jarmila Vinsova
Keyword(s):  

2015 ◽  
Vol 11 (6) ◽  
pp. 573-579 ◽  
Author(s):  
Pedro Araújo ◽  
Luís da Silva ◽  
Joaquim Esteves da Silva

2020 ◽  
Vol 16 (4) ◽  
pp. 389-401 ◽  
Author(s):  
Hanane Boucherit ◽  
Abdelouahab Chikhi ◽  
Abderrahmane Bensegueni ◽  
Amina Merzoug ◽  
Jean-Michel Bolla

Background: The great emergence of multi-resistant bacterial strains and the low renewal of antibiotics molecules are leading human and veterinary medicine to certain therapeutic impasses. Therefore, there is an urgent need to find new therapeutic alternatives including new molecules in the current treatments of infectious diseases. Methionine aminopeptidase (MetAP) is a promising target for developing new antibiotics because it is essential for bacterial survival. Objective: To screen for potential MetAP inhibitors by in silico virtual screening of the ZINC database and evaluate the best potential lead molecules by in vitro studies. Methods: We have considered 200,000 compounds from the ZINC database for virtual screening with FlexX software to identify potential inhibitors against bacterial MetAP. Nine chemical compounds of the top hits predicted were purchased and evaluated in vitro. The antimicrobial activity of each inhibitor of MetAP was tested by the disc-diffusion assay against one Gram-positive (Staphylococcus aureus) and two Gram-negative (Escherichia coli & Pseudomonas aeruginosa) bacteria. Among the studied compounds, compounds ZINC04785369 and ZINC03307916 showed promising antibacterial activity. To further characterize their efficacy, the minimum inhibitory concentration was determined for each compound by the microdilution method which showed significant results. Results: These results suggest compounds ZINC04785369 and ZINC03307916 as promising molecules for developing MetAP inhibitors. Conclusion: Furthermore, they could therefore serve as lead molecules for further chemical modifications to obtain clinically useful antibacterial agents.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Rashmi Saxena Pal ◽  
Yogendra Pal ◽  
Pranay Wal ◽  
Ankita Wal ◽  
Nikita Saraswat

Background: WHO declared COVID-19 a global pandemic. New cases are being added every day, as the case count in United States are to the maximum. No drugs or biologics are yet found to be effective for the prevention or treatment of COVID-19. Objective: To discuss the possibilities of available treatments available. Materials & Methods: Brief out-look is undertaken over the past issues available over the similar situations occurred with respect to the current scenario and prospectives. Results: There can be various possibilities in form of convalescent plasma therapy. The known drugs as HIV drugs, antimalarial medicines and antiviral compounds can serve as suggestive option. Conclusion: Till a confirm medicine or vaccine is sorted out for Covid-19, we need to take natural immune-boosters, along with precautionary steps, social distancing and other preventions as instructed for the benefit of everyone with an optimistic mind and attitude.


Sign in / Sign up

Export Citation Format

Share Document