Computational and SAXS-based structure insights of pectin acetyl esterase (CtPae12B) of family 12 carbohydrate esterase from Clostridium thermocellum ATCC 27405

Author(s):  
Jebin Ahmed ◽  
Krishan Kumar ◽  
Kedar Sharma ◽  
Carlos M. G. A. Fontes ◽  
Arun Goyal
2008 ◽  
Vol 379 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Márcia A.S. Correia ◽  
José A.M. Prates ◽  
Joana Brás ◽  
Carlos M.G.A. Fontes ◽  
Joseph A. Newman ◽  
...  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2019 ◽  
Vol 26 (14) ◽  
pp. 2475-2484 ◽  
Author(s):  
Congqiang Zhang ◽  
Heng-Phon Too

Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or ‘industrial workhorse’ organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.


1993 ◽  
Vol 268 (19) ◽  
pp. 14096-14102
Author(s):  
Q. Wang ◽  
D. Tull ◽  
A. Meinke ◽  
N.R. Gilkes ◽  
R.A. Warren ◽  
...  

1993 ◽  
Vol 268 (36) ◽  
pp. 26956-26960
Author(s):  
G J Gerwig ◽  
J P Kamerling ◽  
J F Vliegenthart ◽  
E Morag ◽  
R Lamed ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


Sign in / Sign up

Export Citation Format

Share Document