carbohydrate esterase
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 2)

2020 ◽  
Vol 212 (1) ◽  
pp. 107596
Author(s):  
Barbara Franke ◽  
Marta Veses-Garcia ◽  
Kay Diederichs ◽  
Heather Allison ◽  
Daniel J. Rigden ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Zhao Wang ◽  
Prashant Mohan-Anupama Pawar ◽  
Marta Derba-Maceluch ◽  
Mattias Hedenström ◽  
Sun-Li Chong ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Cathleen Kmezik ◽  
Cyrielle Bonzom ◽  
Lisbeth Olsson ◽  
Scott Mazurkewich ◽  
Johan Larsbrink

Abstract Background Plant biomass is an abundant and renewable carbon source that is recalcitrant towards both chemical and biochemical degradation. Xylan is the second most abundant polysaccharide in biomass after cellulose, and it possesses a variety of carbohydrate substitutions and non-carbohydrate decorations which can impede enzymatic degradation by glycoside hydrolases. Carbohydrate esterases are able to cleave the ester-linked decorations and thereby improve the accessibility of the xylan backbone to glycoside hydrolases, thus improving the degradation process. Enzymes comprising multiple catalytic glycoside hydrolase domains on the same polypeptide have previously been shown to exhibit intramolecular synergism during degradation of biomass. Similarly, natively fused carbohydrate esterase domains are encoded by certain bacteria, but whether these enzymes can result in similar synergistic boosts in biomass degradation has not previously been evaluated. Results Two carbohydrate esterases with similar architectures, each comprising two distinct physically linked catalytic domains from families 1 (CE1) and 6 (CE6), were selected from xylan-targeting polysaccharide utilization loci (PULs) encoded by the Bacteroidetes species Bacteroides ovatus and Flavobacterium johnsoniae. The full-length enzymes as well as the individual catalytic domains showed activity on a range of synthetic model substrates, corn cob biomass, and Japanese beechwood biomass, with predominant acetyl esterase activity for the N-terminal CE6 domains and feruloyl esterase activity for the C-terminal CE1 domains. Moreover, several of the enzyme constructs were able to substantially boost the performance of a commercially available xylanase on corn cob biomass (close to twofold) and Japanese beechwood biomass (up to 20-fold). Interestingly, a significant improvement in xylanase biomass degradation was observed following addition of the full-length multidomain enzyme from B. ovatus versus the addition of its two separated single domains, indicating an intramolecular synergy between the esterase domains. Despite high sequence similarities between the esterase domains from B. ovatus and F. johnsoniae, their addition to the xylanolytic reaction led to different degradation patterns. Conclusion We demonstrated that multidomain carbohydrate esterases, targeting the non-carbohydrate decorations on different xylan polysaccharides, can considerably facilitate glycoside hydrolase-mediated hydrolysis of xylan and xylan-rich biomass. Moreover, we demonstrated for the first time a synergistic effect between the two fused catalytic domains of a multidomain carbohydrate esterase.


2020 ◽  
Author(s):  
Adiphol Dilokpimol ◽  
Bart Verkerk ◽  
Annie Bellemare ◽  
Mathieu Lavallee ◽  
Matthias Frommhagen ◽  
...  

Abstract Background Feruloyl esterases (FAEs) and acetyl xylan esterases (AXEs) are important accessory enzymes in the deconstruction of plant biomass. Carbohydrate Esterase family 1 (CE1) of the Carbohydrate-Active enZymes database contains both fungal FAEs and AXEs, sharing a high amino acid sequence similarity, even though they target different structural molecules on plant cell wall polysaccharides. Results We recently classified fungal CE1 into five subfamilies (CE1_SF1-5). In this study, ten novel fungal CE1 enzymes from different subfamilies were heterologously produced in Aspergillus niger and characterized to gain insight on relationships among these esterases. The enzymes from CE1_SF1 possess AXE activity, as they hydrolyzed p NP-acetate and released acetic acid from wheat arabinoxylan, but were not active towards FAE substrates. CE1_SF5 showed FAE activity as they hydrolyzed methyl ferulate and other FAE related substrates, and release ferulic acid from wheat arabinoxylan. These FAEs preferred feruloylated arabinoxylan over pectin. Two CE1_SF2, sharing over 70% amino acid sequence identity, possessed the opposite activity. Interestingly, one enzyme from CE1_SF1 and one from CE1_SF5 possess dual feruloyl/acetyl xylan esterase (FXE) activity. These dual activity enzymes showed expansion of substrate specificity. Conclusions The new FXEs from CE1 can efficiently release both ferulic acid and acetic acid from feruloylated xylan, making them particularly interesting novel components of industrial enzyme cocktails for plant biomass degradation.


Author(s):  
Athena Andreou ◽  
Petros Giastas ◽  
Sofia Arnaouteli ◽  
Mary Tzanodaskalaki ◽  
Socrates J. Tzartos ◽  
...  

Ba0331 is a putative polysaccharide deacetylase from Bacillus anthracis, the etiological agent of the disease anthrax, that contributes to adaptation of the bacterium under extreme conditions and to maintenance of the cell shape. In the present study, the crystal structure of Ba0331 was determined at 2.6 Å resolution. The structure consists of two domains: a fibronectin type 3-like (Fn3-like) domain and a NodB catalytic domain. The latter is present in all carbohydrate esterase family 4 enzymes, while a comparative analysis of the Fn3-like domain revealed structural plasticity despite the retention of the conserved Fn3-like domain characteristics.


Sign in / Sign up

Export Citation Format

Share Document