Synthesis of novel pancreatic lipase inhibitors: Biological investigation and in silico studies

Author(s):  
Arif Mermer ◽  
Serpil Demirci ◽  
Gizem Tatar
2019 ◽  
Vol 19 (4) ◽  
pp. 449-457 ◽  
Author(s):  
Umesh Panwar ◽  
Sanjeev Kumar Singh

Background: Obesity is well known multifactorial disorder towards the public health concern in front of the world. Increasing rates of obesity are characterized by liver diseases, chronic diseases, diabetes mellitus, hypertension and stroke, improper function of the heart, reproductive and gastrointestinal diseases, and gallstones. An essential enzyme pancreatic lipase recognized for the digestion and absorption of lipids can be a promising drug target towards the future development of antiobesity therapeutics in the cure of obesity disorders. Objective: The purpose of present study is to identify an effective potential therapeutic agent for the inhibition of pancreatic lipase. Methods: A trio of in-silico procedure of HTVS, SP and XP in Glide module, Schrodinger with default parameters, was applied on Specs databases to identify the best potential compound based on receptor grid. Finally, based on binding interaction, docking score and glide energy, selected compounds were taken forward to the platform of IFD, ADME, MMGBSA, DFT, and MDS for analyzing the ligands behavior into the protein binding site. Results: Using in silico protocol of structure-based virtual screening on pancreatic lipase top two compounds AN-465/43369242 & AN-465/43384139 from Specs database were reported. The result suggested that both the compounds are competitive inhibitors with higher docking score and greatest binding affinity than the reported inhibitor. Conclusion: We anticipate that results could be future therapeutic agents and may present an idea toward the experimental studies against the inhibition of pancreatic lipase.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
T Buchholz ◽  
A Frank ◽  
G Wolber ◽  
MF Melzig

2020 ◽  
Vol 28 (2) ◽  
pp. 213-237 ◽  
Author(s):  
Andrea Mastinu ◽  
Giovanni Ribaudo ◽  
Alberto Ongaro ◽  
Sara Anna Bonini ◽  
Maurizio Memo ◽  
...  

: Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the “phytocomplex” of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims to exhaustively address the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of the novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, with the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document