Novel species-specific glycoprotein on the surface of Mytilus edulis and M. trossulus eggs

2017 ◽  
Vol 61 (4) ◽  
pp. 283-289
Author(s):  
F. M. Harper ◽  
K. J. Riley ◽  
P. D. Rawson
1996 ◽  
Vol 271 (36) ◽  
pp. 22280
Author(s):  
Bernadette Cusak ◽  
Karen Groshan ◽  
Daniel J. McCormick ◽  
Yuan-Ping Pang ◽  
Robin Perry ◽  
...  

Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1359-1367 ◽  
Author(s):  
Carlos Saavedra ◽  
Donald T Stewart ◽  
Rebecca R Stanwood ◽  
Eleftherios Zouros

Abstract In each of the mussel species Mytilus edulis and M. trossulus there exist two types of mtDNA, the F type transmitted through females and the M type transmitted through males. Because the two species produce fertile hybrids in nature, F and M types of one may introgress into the other. We present the results from a survey of a population in which extensive hybridization occurs between these two species. Among specimens classified as “pure” M. edulis or “pure” M. trossulus on the basis of allozyme analysis, we observed no animal that carried the F or the M mitotype of the other species. In most animals of mixed nuclear background, an individual's mtDNA came from the species that contributed the majority of the individual's nuclear genes. Most importantly, the two mtDNA types in post-F1 male hybrids were of the same species origin. We interpret this to mean that there are intrinsic barriers to the exchange of mtDNA between these two species. Because such barriers were not noted in other hybridizing species pairs (many being even less interfertile than M. edulis and M. trossulus), their presence in Mytilus could be another feature of the unusual mtDNA system in this genus.


2015 ◽  
Vol 9 (1) ◽  
pp. e0003469 ◽  
Author(s):  
Robin H. Miller ◽  
Clifford O. Obuya ◽  
Elizabeth W. Wanja ◽  
Bernhards Ogutu ◽  
John Waitumbi ◽  
...  

1992 ◽  
Vol 83 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. F. Hamlyn ◽  
G. Nelson ◽  
B. J. McCarthy

2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1922-1929 ◽  
Author(s):  
Sung-Oui Suh ◽  
Pushpa Gujjari ◽  
Carolyn Beres ◽  
Brian Beck ◽  
Jianlong Zhou

Twenty-three yeast strains traditionally identified as Zygosaccharomyces bailii were studied in order to clarify their taxonomy and phylogenetic relationships. The molecular phylogeny from rRNA gene sequences showed that these yeasts were well divided into three major groups, and two of the groups could be clearly distinguished from the type strain of Z. bailii at the species level. Therefore, we propose Zygosaccharomyces parabailii sp. nov. (type strain ATCC 56075T  = NBRC 1047T  = NCYC 128T  = CBS 12809T) and Zygosaccharomyces pseudobailii sp. nov. (type strain ATCC 56074T  = NBRC 0488T  = CBS 2856T) to accommodate the yeasts belonging to the two groups. By conventional physiological tests, Z. bailii and the two novel species are not clearly distinguished from one another, as variations exist more frequently between individual strains and are not species-specific. However, the conclusions from rRNA gene sequence analyses are well supported by genome fingerprinting patterns as well as other protein-coding gene sequence comparisons.


Microbiology ◽  
1998 ◽  
Vol 144 (8) ◽  
pp. 2095-2101 ◽  
Author(s):  
L. C. Skillman ◽  
I. W. Sutherland ◽  
M. V. Jones ◽  
A. Goulsbra

2017 ◽  
Vol 11 (7) ◽  
pp. e0005734 ◽  
Author(s):  
Marina Papaiakovou ◽  
Nils Pilotte ◽  
Jessica R. Grant ◽  
Rebecca J. Traub ◽  
Stacey Llewellyn ◽  
...  

2020 ◽  
Vol 70 (8) ◽  
pp. 4767-4773 ◽  
Author(s):  
Jong-Shian Liou ◽  
Chien-Hsun Huang ◽  
Nao Ikeyama ◽  
Ai-Yun Lee ◽  
I-Ching Chen ◽  
...  

A strictly anaerobic predominant bacterium, designated as strain gm001T, was isolated from a freshly voided faecal sample collected from a healthy Taiwanese adult. Cells were Gram-stain-negative rods, non-motile and non-spore-forming. Strain gm001T was identified as a member of the genus Prevotella , and a comparison of 16S rRNA and hsp60 gene sequences revealed sequence similarities of 98.5 and 93.3 %, respectively, demonstrating that it was most closely related to the type strain of Prevotella copri . Phylogenomic tree analysis indicated that the gm001T cluster is an independent lineage of P. copri DSM 18205T. The average nucleotide identity, digital DNA‒DNA hybridization and average amino acid identity values between strain gm001T and P. copri DSM 18205T were 80.9, 28.6 and 83.8 %, respectively, which were clearly lower than the species delineation thresholds. The species-specific genes of this novel species were also identified on the basis of pan-genomic analysis. The predominant menaquinones were MK-11 and MK-12, and the predominant fatty acids were anteiso-C15 : 0, C15 : 0 and iso-C15 : 0. Acetate and succinate were produced from glucose as metabolic end products. Taken together, the results indicate that strain gm001T represents a novel species of the genus Prevotella , for which the name Prevotella hominis sp. nov. is proposed. The type strain is gm001T (=BCRC 81118T=JCM 33280T).


Sign in / Sign up

Export Citation Format

Share Document